【題目】已知函數(shù),其中為實(shí)數(shù).

(1)若曲線在點(diǎn)處的切線方程為,試求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng),,且時(shí),若恒有,試求實(shí)數(shù)的取值范圍.

【答案】(1)函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2).

【解析】試題分析:由題意點(diǎn)處的切線方程為,求出的值,繼而求出函數(shù)的單調(diào)性利用單調(diào)性將問(wèn)題中的絕對(duì)值去掉,構(gòu)造新函數(shù)來(lái)證明結(jié)論。

解析:(1)函數(shù)的定義域?yàn)?/span>,

,,可知.

.

當(dāng),即時(shí),,單調(diào)遞增;

當(dāng)時(shí),,單調(diào)遞減.

所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

(2)函數(shù)

.

,,

當(dāng)時(shí),可知,

恒成立,

可知,在區(qū)間上為單調(diào)遞增函數(shù),

不妨設(shè),且,

變?yōu)?/span>

,

設(shè)函數(shù)

,得時(shí)為單調(diào)遞減函數(shù),即,

也即對(duì)恒成立.

因?yàn)?/span>,可知時(shí),取最大值,

.

對(duì)時(shí)恒成立,

,可知

取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐V-ABC,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BCAC=BC=,O,M分別為AB,VA的中點(diǎn).

(1)求證:平面MOC⊥平面VAB.

(2)求三棱錐V-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正數(shù)數(shù)列的前項(xiàng)和為,且滿(mǎn)足;在數(shù)列中,

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),數(shù)列的前項(xiàng)和為. 若對(duì)任意,存在實(shí)數(shù),使恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某幾何體挖去一部分后得到的三視圖,其中主視圖和左視圖相同都是一個(gè)等腰梯形及它的內(nèi)切圓,俯視圖中有兩個(gè)邊長(zhǎng)分別為2和8的正方形且圖中的圓與主視圖圓大小相等并且圓心為兩個(gè)正方形的中心.問(wèn)該幾何體的體積是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】鷹潭市龍虎山花語(yǔ)世界位于中國(guó)第八處世界自然遺產(chǎn),世界地質(zhì)公元、國(guó)家自然文化雙遺產(chǎn)地、國(guó)家AAAAA級(jí)旅游景區(qū)﹣﹣龍虎山主景區(qū)排衙峰下,是一座獨(dú)具現(xiàn)代園藝風(fēng)格的花卉公園,園內(nèi)匯集了3000余種花卉苗木,一年四季姹紫嫣紅花香四溢.花園景觀融合法、英、意、美、日、中六大經(jīng)典園林風(fēng)格,景觀設(shè)計(jì)唯美新穎.玫瑰花園、香草花溪、臺(tái)地花海、植物迷宮、兒童樂(lè)園等景點(diǎn)錯(cuò)落有致,交相呼應(yīng)又自成一體,是世界園藝景觀的大展示.該景區(qū)自2015年春建成試運(yùn)行以來(lái),每天游人如織,郁金香、向日葵、虞美人等賞花旺季日入園人數(shù)最高達(dá)萬(wàn)人. 某學(xué)校社團(tuán)為了解進(jìn)園旅客的具體情形以及采集旅客對(duì)園區(qū)的建議,特別在2017年4月1日賞花旺季對(duì)進(jìn)園游客進(jìn)行取樣調(diào)查,從當(dāng)日12000名游客中抽取100人進(jìn)行統(tǒng)計(jì)分析,結(jié)果如下:(表一)

年齡

頻數(shù)

頻率

[0,10)

10

0.1

5

5

[10,20)

[20,30)

25

0.25

12

13

[30,40)

20

0.2

10

10

[40,50)

10

0.1

6

4

[50,60)

10

0.1

3

7

[60,70)

5

0.05

1

4

[70,80)

3

0.03

1

2

[80,90)

2

0.02

0

2

合計(jì)

100

1.00

45

55


(1)完成表格一中的空位①﹣④,并在答題卡中補(bǔ)全頻率分布直方圖,并估計(jì)2017年4月1日當(dāng)日接待游客中30歲以下人數(shù).
(2)完成表格二,并問(wèn)你能否有97.5%的把握認(rèn)為在觀花游客中“年齡達(dá)到50歲以上”與“性別”相關(guān)?
(3)按分層抽樣(分50歲以上與50以下兩層)抽取被調(diào)查的100位游客中的10人作為幸運(yùn)游客免費(fèi)領(lǐng)取龍虎山內(nèi)部景區(qū)門(mén)票,再?gòu)倪@10人中選取2人接受電視臺(tái)采訪,設(shè)這2人中年齡在50歲以上(含)的人數(shù)為ξ,求ξ的分布列 (表二)

50歲以上

50歲以下

合計(jì)

男生

5

40

45

女生

15

40

55

合計(jì)

20

80

100

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:k2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近于圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的(四舍五入精確到小數(shù)點(diǎn)后兩位)的值為( )(參考數(shù)據(jù):sin15°=0.2588,sin75°=0.1305)
A.3.10
B.3.11
C.3.12
D.3.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=mln(x+1),g(x)= (x>﹣1). (Ⅰ)討論函數(shù)F(x)=f(x)﹣g(x)在(﹣1,+∞)上的單調(diào)性;
(Ⅱ)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)的反函數(shù)為,則函數(shù)的圖象可能是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一(1)(2)兩個(gè)班聯(lián)合開(kāi)展“詩(shī)詞大會(huì)進(jìn)校園,國(guó)學(xué)經(jīng)典潤(rùn)心田”古詩(shī)詞競(jìng)賽主題班會(huì)活動(dòng),主持人從這兩個(gè)班分別隨機(jī)選出20名同學(xué)進(jìn)行當(dāng)場(chǎng)測(cè)試,他們的測(cè)試成績(jī)按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分組,分別用頻率分布直方圖與莖葉圖統(tǒng)計(jì)如圖(單位:分):
高一(2)班20名學(xué)生成績(jī)莖葉圖:

4

5

5

2

6

4 5 6 8

7

0 5 5 8 8 8 8 9

8

0 0 5 5

9

4 5

(Ⅰ)分別計(jì)算兩個(gè)班這20名同學(xué)的測(cè)試成績(jī)?cè)赱80,90)的頻率,并補(bǔ)全頻率分布直方圖;
(Ⅱ)分別從兩個(gè)班隨機(jī)選取1人,設(shè)這兩人中成績(jī)?cè)赱80,90)的人數(shù)為X,求X的分布列(頻率當(dāng)作概率使用).
(Ⅲ)運(yùn)用所學(xué)統(tǒng)計(jì)知識(shí)分析比較兩個(gè)班學(xué)生的古詩(shī)詞水平.

查看答案和解析>>

同步練習(xí)冊(cè)答案