【題目】已知是橢圓上關于原點對稱的任意兩點,且點都不在 軸上.

(1)若,求證: 直線的斜率之積為定值;

(2)若橢圓長軸長為,點在橢圓上,設是橢圓上異于點的任意兩點,且.問直線是否過一個定點?若過定點,求出該定點坐標;若不過定點,請說明理由.

【答案】(1)見解析;(2)直線恒定過點.

【解析】試題分析:1,則 將坐標帶入橢圓化簡即可;

(2)設直線,與橢圓聯(lián)立得,設,由,韋達定理代入得,直線恒定過點,當直線斜率,易得成立.

試題解析:

(1) 由題意設,則,所以有,又因為

,所以,(定值).

(2) 直線過點,理由如下: ① 當直線斜率,易得,

直線的方程為. 直線過點.②由已知,橢圓方程為,設直線,則,設,則,,

, , (舍去), 方程為,則直線恒定過點,

綜上所述,直線恒定過點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(2,1), =(1,7), =(5,1),設X是直線OP上的一點(O為坐標原點),那么 的最小值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E為BB1中點.

(1)證明:AC⊥D1E;
(2)求DE與平面AD1E所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn , 令Tn= ,稱Tn為數(shù)列a1 , a2 , …,an的“理想數(shù)”,已知數(shù)列a1 , a2 , …,a502的“理想數(shù)”為2012,那么數(shù)列2,a1 , a2 , …,a502的“理想數(shù)”為(
A.2010
B.2011
C.2012
D.2013

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等比數(shù)列{an}中,公比q≠1,等差數(shù)列{bn}滿足b1=a1=3,b4=a2 , b13=a3
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記cn=(﹣1)nbn+an , 求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知D是△ABC邊BC延長線上一點,記 .若關于x的方程2sin2x﹣(λ+1)sinx+1=0在[0,2π)上恰有兩解,則實數(shù)λ的取值范圍是(
A.λ<﹣2
B.λ<﹣4
C.
D.λ<﹣4或

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0, )的圖象如圖所示.

(1)求A,w及φ的值;
(2)若tana=2,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知cosα= ,cosβ= ,且α,β∈(0, ),求cos(α﹣β),sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ABCD為矩形,AB=3,BC=2,在矩形ABCD內(nèi)隨機取一點P,點P到矩形四個頂點的距離都大于1的概率為

查看答案和解析>>

同步練習冊答案