對于函數(shù)f(x),若f(x)=x,則稱x為f(x)的“不動點”;若f(f(x))=x,則稱x為f(x)的“穩(wěn)定點”.函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為A和B,即A={x|f(x)=x},B={x|f(f(x))=x}.

(1)求證;

(2)若f(x)=ax2-1(a∈R,x∈R),且,求實數(shù)a的取值范圍;

(3)若f(x)是R上的單調(diào)遞增函數(shù),x0是函數(shù)的穩(wěn)定點,問x0是函數(shù)的不動點嗎?若是,請證明你的結(jié)論;若不是,請說明理由.

答案:
解析:

  解:(1)若,則顯然成立; 2分

  若,設,有,則,故 4分

  (2)因為所以方程有實根

   解得 5分

  又所以的左邊有因式從而有 7分

  ∵A=B,∴方程要么沒有實根,要么實根是方程的根.若方程沒有實根,則,由此解得; 9分

  若方程有實根且實根是方程的根,則由方程代入.由此解得再代入得,由此解得 11分

  ∴a的取值范圍是 12分

  (3)由題意是函數(shù)的穩(wěn)定點則是R的單調(diào)增函數(shù),則所以,矛盾. 14分

  若是R的單調(diào)增函數(shù),則所以,矛盾.故.所以是函數(shù)的不動點. 16分


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年黃岡中學一模理) (本小題滿分14分)對于函數(shù)f(x),若存在,使成立,則稱x0f(x)的不動點. 如果函數(shù)有且僅有兩個不動點0,2,且

(1)試求函數(shù)f(x)的單調(diào)區(qū)間;

(2)已知各項不為零且不為1的數(shù)列{an}滿足,求證:;

(3)設為數(shù)列{bn}的前n項和,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

       對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0f(x)的不動點  已知函數(shù)f(x)=ax2+(b+1)x+(b–1)(a≠0)

(1)若a=1,b=–2時,求f(x)的不動點;

(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍;

(3)在(2)的條件下,若y=f(x)圖像上A、B兩點的橫坐標是函數(shù)f(x)的不動點,且A、B關于直線y=kx+對稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0f(x)的不動點.如果函數(shù)

f(x)=ax2bx+1(a>0)有兩個相異的不動點x1,x2

⑴若x1<1<x2,且f(x)的圖象關于直線xm對稱,求證:<m<1;

⑵若|x1|<2且|x1x2|=2,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖南師大附中高三第二次月考理科數(shù)學試卷(解析版) 題型:填空題

對于函數(shù)f(x),若在其定義域內(nèi)存在兩個實數(shù)a,b(a<b),使當x∈[a,b]時,f(x)的值域也是[a,b],則稱函數(shù)f(x)為“布林函數(shù)”,區(qū)間[a,b]稱為函數(shù)f(x)的“等域區(qū)間”.

(1)布林函數(shù)的等域區(qū)間是         .

(2)若函數(shù)是布林函數(shù),則實數(shù)k的取值范圍是           .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖南省華容縣高一第一學期期末考試數(shù)學試卷 題型:解答題

(本小題滿分6分)對于函數(shù)f(x),若存在x0ÎR,使f(x0)=x0成立,則稱點(x0,x0)為函數(shù)的不動點,已知函數(shù)f(x)=ax2+bx-b有不動點(1,1)和(-3,-3),求a、b的值。

 

查看答案和解析>>

同步練習冊答案