已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的長軸長為4,若點(diǎn)P是橢圓C上任意一點(diǎn),過原點(diǎn)的直線l與橢圓相交于M、N兩點(diǎn),記直線PM、PN的斜率分別為KPM、KPN,當(dāng)KPMKPN=-
1
4
時,則橢圓方程為(  )
A.
x2
16
+
y2
4
=1
B.
x2
4
+
y2
2
=1
C.x2+
y2
4
=1
D.
x2
4
+y2=1
由長軸長為4得2a=4,解得a=2,
設(shè)P(x0,y0),直線l方程為y=kx,M(x1,kx1),N(-x1,-kx1),
則KPM=
y0-kx1
x0-x1
,KPN=
y0+kx1
x0+x1
,
KPMKPN=-
1
4
得,
y0-kx1
x0-x1
y0+kx1
x0+x1
=-
1
4
,即
y02-k2x12
x02-x12
=-
1
4

所以4y02=(4k2+1)x12-x02①,
又P在橢圓上,所以
x02
4
+
y02
b2
=1
,即4y02=4b2-b2x02,代入①式得4b2-b2x02=(4k2+1)x12-x02,
所以4b2=(4k2+1)x12+(b2-1)x02,
因?yàn)辄c(diǎn)P為橢圓上任意一點(diǎn),所以該式恒成立與x0無關(guān),
所以b2-1=0,解得b=1,
所以所求橢圓方程為
x2
4
+y2=1

故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知O為坐標(biāo)原點(diǎn),F(xiàn)為橢圓C:x2+
y2
2
=1
在y軸正半軸上的焦點(diǎn),過F且斜率為-
2
的直線l與C交于A、B兩點(diǎn),點(diǎn)P滿足
OA
+
OB
+
OP
=
0

(Ⅰ)證明:點(diǎn)P在C上;
(Ⅱ)設(shè)點(diǎn)P關(guān)于點(diǎn)O的對稱點(diǎn)為Q,證明:A、P、B、Q四點(diǎn)在同一圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1
x2
4
+y2=1,橢圓C2以C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1和C2上,
OB
=2
OA
,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

將曲線C1:(x-4)2+y2=4所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?span >
1
2
得到曲線C2,將曲線C2向左(x軸負(fù)方向)平移4個單位,得到曲線C3
(Ⅰ)求曲線C3的方程;
(Ⅱ)垂直于x軸的直線l與曲線C3相交于C、D兩點(diǎn)(C、D可以重合),已知A(-2,0),B(2,0),直線AC、BD相交于點(diǎn)P,求P點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>c>0,a2=b2+c2)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點(diǎn)P作此圓的切線,切點(diǎn)為T,且|PT|的最小值不小于
3
2
(a-c)

(1)求橢圓的離心率e的取值范圍;
(2)設(shè)橢圓的短半軸長為1,圓F2與x軸的右交點(diǎn)為Q,過點(diǎn)Q作斜率為k(k>0)的直線l與橢圓相交于A,B兩點(diǎn),若OA⊥OB,求直線l被圓F2截得的弦長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C1x2-
y2
4
=1

(1)求與雙曲線C1有相同焦點(diǎn),且過點(diǎn)P(4,
3
)的雙曲線C2的標(biāo)準(zhǔn)方程;
(2)直線l:y=x+m分別交雙曲線C1的兩條漸近線于A、B兩點(diǎn).當(dāng)
OA
OB
=3
時,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點(diǎn),M是橢圓短軸的一個端點(diǎn),過F1的直線l與橢圓交于A,B兩點(diǎn),△MF1F2的面積為4,△ABF2的周長為8
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)Q的坐標(biāo)為(1,0),是否存在橢圓上的點(diǎn)P及以Q為圓心的一個圓,使得該圓與直線PF1,PF2都相切,如存在,求出P點(diǎn)坐標(biāo)及圓的方程,如不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖橢圓C的方程為
y2
a2
+
x2
b2
=1(a>b>0)
,A是橢圓C的短軸左頂點(diǎn),過A點(diǎn)作斜率為-1的直線交橢圓于B點(diǎn),點(diǎn)P(1,0),且BPy軸,△APB的面積為
9
2

(1)求橢圓C的方程;
(2)在直線AB上求一點(diǎn)M,使得以橢圓C的焦點(diǎn)為焦點(diǎn),且過M的雙曲線E的實(shí)軸最長,并求此雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y2=4x上一定點(diǎn)P(x0,2),直線l的一個方向向量
d
=(1,-1)

(1)若直線l過P,求直線l的方程;
(2)若直線l不過P,且直線l與拋物線交于A,B兩點(diǎn),設(shè)直線PA,PB的斜率為kPA,kPB,求kPA+kPB的值.

查看答案和解析>>

同步練習(xí)冊答案