已知二次函數(shù)f(x)=ax2+bx+c,設(shè)x1,x2∈R且x1<x2,f(x1)≠f(x2).求證:方程f(x)=
1
2
[f(x1)+f(x2)]
有兩個不相等的實數(shù)根,且必有一個屬于(x1,x2).
證明:令g(x)=f(x)-
1
2
[f(x1)+f(x2)]=ax2+bx+c-
1
2
[f(x1)+f(x2),
因為△=b2-4a[c-
f(x1)+f(x2)
2
]
=b2-4ac+2a[f(x1)+f(x2)]=b2-4ac+2a[ax12+bx1+c+ax22+bx2+c]=[b+a(x1+x2)]2+a2(x1-x2)2,
又x1<x2,所以△>0,
所以g(x)=0有兩個不等實根,即方程f(x)=
1
2
[f(x1)+f(x2)]
有兩個不相等的實數(shù)根;
而g(x1)=f(x1)-
1
2
[f(x1)+f(x2)]=-
f(x2)-f(x1)
2
,g(x2)=f(x2)-
1
2
[f(x1)+f(x2)]=
f(x2)-f(x1)
2
,
∴g(x1)•g(x2)=-
1
4
[f(x2)-f(x1)]2<0.
再由g(x)的圖象是連續(xù)的,可得g(x)在區(qū)間(x1,x2) 內(nèi)必有零點,即 f(x)-
f(x1)+f(x2)
2
=0在區(qū)間(x1,x2) 內(nèi)必有實數(shù)根.
綜上可得,方程f(x)=
1
2
[f(x1)+f(x2)]
有兩個不相等的實數(shù)根,且必有一個屬于(x1,x2).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過原點,且滿足f(2)=0,求實數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結(jié)論給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點是(-1,2),且經(jīng)過原點,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案