(12分) 已知在拋物線上,的重心與此拋物線的焦點F重合。
⑴ 寫出該拋物線的標準方程和焦點F的坐標;
⑵ 求線段BC的中點M的坐標;
⑶ 求BC所在直線的方程。
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知橢圓的中心在坐標原點O,長軸長為2,離心率e=,過右焦點F的直線l交橢圓于P、Q兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本大題滿分14分)
已知△的兩個頂點的坐標分別是,,且所在直線的斜率之積等于.
(Ⅰ)求頂點的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(Ⅱ)當時,過點的直線交曲線于兩點,設點關于軸的對稱點為(不重合).求證直線與軸的交點為定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
設雙曲線的方程為,、為其左、右兩個頂點,是雙曲線 上的任意一點,作,,垂足分別為、,與交于點.
(1)求點的軌跡方程;
(2)設、的離心率分別為、,當時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
拋物線的焦點與雙曲線的右焦點重合.
(Ⅰ)求拋物線的方程;
(Ⅱ)求拋物線的準線與雙曲線的漸近線圍成的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
雙曲線與雙曲線有共同的漸近線,且經(jīng)過點,橢圓以雙曲線的焦點為焦點且橢圓上的點與焦點的最短距離為,求雙曲線和橢圓的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分15分)
已知點,是拋物線上相異兩點,且滿足.
(Ⅰ)若的中垂線經(jīng)過點,求直線的方程;
(Ⅱ)若的中垂線交軸于點,求的面積的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知中心在坐標原點O,焦點在軸上,長軸長是短軸長的2倍的橢圓經(jīng)過點M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線平行于,且與橢圓交于A、B兩個不同點.
(。┤為鈍角,求直線在軸上的截距m的取值范圍;
(ⅱ)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的左、右焦點分別為,離心率, .
(I)求橢圓的標準方程;
(II)過點的直線與該橢圓交于兩點,且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com