(本小題滿分12分)
雙曲線與雙曲線有共同的漸近線,且經(jīng)過點,橢圓以雙曲線的焦點為焦點且橢圓上的點與焦點的最短距離為,求雙曲線和橢圓的方程。

解析試題分析:解:由已知設(shè)雙曲線方程
∵過  
則焦點。 設(shè)橢圓方程
橢圓上任意一點



考點:本試題考查了雙曲線和橢圓方程的知識。
點評:解決該試題的關(guān)鍵是對于橢圓和雙曲線的性質(zhì)的準確表示和方程的準確求解。利用已知中的條件,會設(shè)公共漸近線的雙曲線的方程即為,只要將右邊的系數(shù)改為一個固定的參數(shù)即可,這個知識點要掌握,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知拋物線C1:y2=4x的焦點與橢圓C2:的右焦點F2重合,F(xiàn)1是橢圓的左焦點;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點C在拋物線y2=4x上運動,求ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個公共點,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓C:=1(a>b>0)的兩個焦點分別為F1(﹣c,0),F(xiàn)2(c,0),M是橢圓短軸的一個端點,且滿足=0,點N( 0,3 )到橢圓上的點的最遠距離為5
(1)求橢圓C的方程
(2)設(shè)斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點A、B,Q為AB的中點,;問A、B兩點能否關(guān)于過點P、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)已知橢圓的離心率為,為橢圓的右焦點,兩點在橢圓上,且,定點。
(1)若時,有,求橢圓的方程;
(2)在條件(1)所確定的橢圓下,當(dāng)動直線斜率為k,且設(shè)時,試求關(guān)于S的函數(shù)表達式f(s)的最大值,以及此時兩點所在的直線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分) 已知在拋物線上,的重心與此拋物線的焦點F重合。
⑴ 寫出該拋物線的標準方程和焦點F的坐標;
⑵ 求線段BC的中點M的坐標;
⑶ 求BC所在直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知動圓P(圓心為點P)過定點A(1,0),且與直線相切。記動點P的軌跡為C。
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)過點P的直線l與曲線C相切,且與直線相交于點Q。試研究:在x軸上是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知點F( 1,0),與直線4x+3y + 1 =0相切,動圓M與及y軸都相切. (I )求點M的軌跡C的方程;(II)過點F任作直線l,交曲線C于A,B兩點,由點A,B分別向各引一條切線,切點 分別為P,Q,記.求證是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線及點,直線的斜率為1且不過點P,與拋物線交于A,B兩點。
(1) 求直線軸上截距的取值范圍;
(2) 若AP,BP分別與拋物線交于另一點C,D,證明:AD、BC交于定點。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某海域有、兩個島嶼,島在島正東4海里處。經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)現(xiàn)過魚群。以、所在直線為軸,的垂直平分線為軸建立平面直角坐標系。

(1)求曲線的標準方程;(6分)
(2)某日,研究人員在、兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),、兩島收到魚群在處反射信號的時間比為,問你能否確定處的位置(即點的坐標)?(8分)

查看答案和解析>>

同步練習(xí)冊答案