【題目】已知橢圓C1: + =1(a>b>0)過(guò)點(diǎn)A(1, ),其焦距為2.
(1)求橢圓C1的方程;
(2)已知橢圓具有如下性質(zhì):若橢圓的方程為 + =1(a>b>0),則橢圓在其上一點(diǎn)A(x0 , y0)處的切線方程為 + =1,試運(yùn)用該性質(zhì)解決以下問(wèn)題:
(i)如圖(1),點(diǎn)B為C1在第一象限中的任意一點(diǎn),過(guò)B作C1的切線l,l分別與x軸和y軸的正半軸交于C,D兩點(diǎn),求△OCD面積的最小值;
(ii)如圖(2),過(guò)橢圓C2: + =1上任意一點(diǎn)P作C1的兩條切線PM和PN,切點(diǎn)分別為M,N.當(dāng)點(diǎn)P在橢圓C2上運(yùn)動(dòng)時(shí),是否存在定圓恒與直線MN相切?若存在,求出圓的方程;若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)解:依題意得:橢圓的焦點(diǎn)為F1(﹣1,0),F(xiàn)2(1,0),由橢圓定義知:2a=|AF1|+|AF2|,
∴ ,所以橢圓C1的方程為 .
(2)解:(。┰O(shè)B(x2,y2),則橢圓C1在點(diǎn)B處的切線方程為
令x=0, ,令 ,所以
又點(diǎn)B在橢圓的第一象限上,所以 ,
∴
∴ ,當(dāng)且僅當(dāng)
所以當(dāng) 時(shí),三角形OCD的面積的最小值為
(ii)設(shè)P(m,n),則橢圓C1在點(diǎn)M(x3,y3)處的切線為:
又PM過(guò)點(diǎn)P(m,n),所以 ,同理點(diǎn)N(x4,y4)也滿足 ,
所以M,N都在直線 上,
即:直線MN的方程為
所以原點(diǎn)O到直線MN的距離 = ,
所以直線MN始終與圓 相切.
【解析】(1)依題意得:橢圓的焦點(diǎn)為F1(﹣1,0),F(xiàn)2(1,0),由橢圓定義知:2a=|AF1|+|AF2|,即可求出a,b,從而可求橢圓C1的方程;(2)(i)確定 ,再結(jié)合基本不等式,即可求△OCD面積的最小值;(ii)先求出直線MN的方程,再求出原點(diǎn)O到直線MN的距離,即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓經(jīng)過(guò)點(diǎn),離心率,直線的方程為.
求橢圓的方程;
是經(jīng)過(guò)右焦點(diǎn)的任一弦(不經(jīng)過(guò)點(diǎn)),設(shè)直線與直線相交于點(diǎn),記, , 的斜率為, , .問(wèn):是否存在常數(shù),使得?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)將101111011(2)轉(zhuǎn)化為十進(jìn)制的數(shù);
(2)將53(8)轉(zhuǎn)化為二進(jìn)制的數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正四棱錐V﹣ABCD中,底面正方形ABCD的邊長(zhǎng)為1,側(cè)棱長(zhǎng)為2,則異面直線VA與BD所成角的大小為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
(1)若b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),求對(duì)任意x∈R,f(x)>0恒成立的概率.
(2)若b是從區(qū)間[0,8](3)任取得一個(gè)數(shù),c是從[0,6]任取的一個(gè)數(shù),求函數(shù)f(x)的圖象與x軸有交點(diǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)(),若的解集是.
(1)求的值;
(2)若關(guān)于的不等式有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}滿足a3=5,a10=﹣9.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求{an}的前n項(xiàng)和Sn及使得Sn最大的序號(hào)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E: 的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交橢圓E于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,﹣1),則E的方程為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4一4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程是 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;
(2)已知點(diǎn)的極坐標(biāo)分別為和,直線與曲線相交于兩點(diǎn),射線
與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com