設(shè)正實數(shù)x,y滿足條件
lg
10x
y
≥0
lg
xy
10
≤0
y≥1
,則lg(x2y)的最大值為
2
2
分析:利用對數(shù)的運算性質(zhì)可對約束條件進行變形,再用換元法可將約束條件中各不等式化為整式不等式,畫出可行域后,求出各角點的坐標,代入目標函數(shù)可得目標函數(shù)的最值.
解答:解:正實數(shù)x,y滿足條件
lg
10x
y
≥0
lg
xy
10
≤0
y≥1

lgx-lgy+1≥0
lgx+lgy-1≤0
lgy≥0
,
令a=lgx,b=lgy,
a-b+1≥0
a+b-1≤0
b≥0
,
滿足條件的可行域如下圖所示:

當a=-1,b=0時,lg(x2y)=2lgx+lgy=2a+b=-2
當a=1,b=0時,lg(x2y)=2lgx+lgy=2a+b=2
當a=0,b=1時,lg(x2y)=2lgx+lgy=2a+b=1
故lg(x2y)的最大值為2
故答案為:2
點評:本題考查的知識點是簡單的線性規(guī)劃,但由于約束條件不是二元一次不等式,故難度較大,解答的關(guān)鍵是利用對數(shù)的性質(zhì)及換元法,將其約束條件中各不等式化為整式不等式
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設(shè)CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量e1=[
 
1
1
],并且矩陣M對應(yīng)的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2
2
sin(θ-
π
4
),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市四區(qū)縣高三(上)聯(lián)考數(shù)學試卷(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設(shè)CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量e1=[],并且矩陣M對應(yīng)的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2sin(),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市四區(qū)縣高三(上)聯(lián)考數(shù)學試卷(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設(shè)CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量e1=[],并且矩陣M對應(yīng)的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2sin(),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

同步練習冊答案