如圖,在凸四邊形ABCD中,C,D為定點(diǎn),CD=
3
,A,B為動點(diǎn),滿足AB=BC=DA=1.
(Ⅰ)寫出cosC與cosA的關(guān)系式;
(Ⅱ)設(shè)△BCD和△ABD的面積分別為S和T,求S2+T2的最大值.
考點(diǎn):余弦定理
專題:三角函數(shù)的求值
分析:(Ⅰ)在三角形BCD和三角形BCD中,利用余弦定理表示出BD2,兩者相等表示即可得到cosC與cosA的關(guān)系式;
(Ⅱ)利用三角形面積公式變形出S與T,進(jìn)而表示出S2+T2,將第一問表示出的cosA代入得到關(guān)于cosC的二次函數(shù),利用二次函數(shù)性質(zhì)即可求出S2+T2的最大值.
解答: 解:(Ⅰ)連接BD,
∵CD=
3
,AB=BC=DA=1,
∴在△BCD中,利用余弦定理得:BD2=BC2+CD2-2BC•CDcosC=4-2
3
cosC;
在△ABD中,BD2=2-2cosA,
∴4-2
3
cosC=2-2cosA,
則cosA=
3
cosC-1;
(Ⅱ)S=
1
2
BC•CD•sinC=
3
2
sinC,T=
1
2
AB•ADsinA=
1
2
sinA,
∵cosA=
3
cosC-1,
∴S2+T2=
3
4
sin2C+
1
4
sin2A=
3
4
(1-cos2C)+
1
4
(1-cos2A)=-
3
2
cos2C+
3
2
cosC+
3
4
=-
3
2
(cosC-
3
6
2+
7
8

則當(dāng)cosC=
3
6
時,S2+T2有最大值
7
8
點(diǎn)評:此題考查了余弦定理,三角形面積公式,同角三角函數(shù)間的基本關(guān)系,以及二次函數(shù)的性質(zhì),熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的真命題是( 。
A、若a>b>0,a>c,則a2>bc
B、若a>b>c,則
a
c
b
c
C、若a>b,n∈N*,則an>bn
D、若a>b>0,則1na<1nb

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,動點(diǎn)P(x,y)到F(0,1)的距離比到直線y=-2的距離小1.
(Ⅰ)求動點(diǎn)P的軌跡W的方程;
(Ⅱ)過點(diǎn)E(0,-4)的直線與軌跡W交于兩點(diǎn)A,B,點(diǎn)D是點(diǎn)E關(guān)于x軸的對稱點(diǎn),點(diǎn)A關(guān)于y軸的對稱點(diǎn)為A1,證明A1,D,B三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,且經(jīng)過點(diǎn)M(-
3
,
1
2
),圓C2
的直徑C1的長軸.如圖,C是橢圓短軸端點(diǎn),動直線AB過點(diǎn)C且與圓C2交于A,B兩點(diǎn),CD垂直于AB交橢圓于點(diǎn)D.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)求△ABD面積的最大值,并求此時直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0),M點(diǎn)的坐標(biāo)為(12,8),N點(diǎn)在拋物線C上,且滿足
ON
=
3
4
OM
,O為坐標(biāo)原點(diǎn).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過點(diǎn)M作傾斜角互補(bǔ)的兩條直線l1,l2,l1與拋物線C交于不同兩點(diǎn)A,B,l2與拋物線C交于不同兩點(diǎn)D,E,弦AB,DE的中點(diǎn)分別為G,H.求當(dāng)直線l1的傾斜角在[
π
6
,
π
4
]時,直線GH被拋物線截得的弦長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(x+
π
3
)cosx.
(Ⅰ)若x∈[0,
π
2
],求f(x)的取值范圍;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知A為銳角,f(A)=
3
2
,b=2,c=3,求cos(A-B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了監(jiān)測某海域的船舶航行情況,在該海域設(shè)立了如圖所示東西走向,相距20海里的A,B兩個觀測站,觀測范圍是到A,B兩觀測站距離之和不超過40海里的區(qū)域.
(Ⅰ)以AB所在直線為x軸,線段AB的垂直平分線為y軸建立平面直角坐標(biāo)系,求觀測區(qū)域邊界曲線的方程;
(Ⅱ)某日上午7時,觀測站B發(fā)現(xiàn)在其正東10海里的C處,有一艘輪船正以每小時8海里的速度向北偏西45°方向航行,問該輪船大約在什么時間離開觀測區(qū)域?(參考數(shù)據(jù):
2
≈1.4,
3
≈1.7
.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sin(x+θ)(0<θ<
 π 
2
)的圖象關(guān)于直線x=
 π 
6
對稱,則θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)(1,1)在ax+y-1=0的上方,則不等式
x+y-2≥0
x-2≤0
ax-y+2≥0
所表示區(qū)域的面積S的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案