【題目】已知雙曲線的漸近線方程為,拋物線:的焦點與雙曲線的右焦點重合,過的直線交拋物線于兩點,為坐標(biāo)原點,若向量與的夾角為,則的面積為_____.
【答案】
【解析】
根據(jù)雙曲線的幾何性質(zhì),求得拋物線的方程為,設(shè)直線的斜率為,則直線的方程為,代入拋物線的方程,由根與系數(shù)的關(guān)系,求得,
設(shè),根據(jù)向量的數(shù)量積的運(yùn)算,求得,即可求解的面積.
由題意,雙曲線,可得雙曲線的焦點在軸上,且,
又由漸近線方程為,所以,解得,即,
所以雙曲線的右焦點,
又因為拋物線:的焦點與雙曲線的右焦點重合,即,
解得,所以拋物線的方程為,
設(shè)直線的斜率為,則直線的方程為,
代入拋物線的方程消去,可得,
設(shè),由根與系數(shù)的關(guān)系,求得,
設(shè),則,
又因為,
則,解得,
所以的面積為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)與(為常數(shù))的圖象在它們與坐標(biāo)軸交點處的切線互相平行.
(1)若關(guān)于的不等式有解,求實數(shù)的取值范圍;
(2)對于函數(shù)和公共定義域內(nèi)的任意實數(shù),我們把的值稱為兩函數(shù)在處的“瞬間距離”.則函數(shù)與的所有“瞬間距離”是否都大于2?請加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在D上的函數(shù)f(x)滿足:對任意x∈D,存在常數(shù)M>0,都有-M<f(x)<M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界。
(Ⅰ)判斷函數(shù)f(x)=-2x+2,x∈[0,2]是否是有界函數(shù),請說明理由;
(Ⅱ)若函數(shù)f(x)=1++,x∈[0,+∞)是以3為上界的有界函數(shù),求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:空間直角坐標(biāo)系O﹣xyz中,過點P(x0,y0,z0)且一個法向量為=(a,b,c)的平面α的方程為a(x﹣x0)+b(y﹣y0)+c(z﹣z0)=0;過點P(x0,y0,z0)且一個方向向量為=(u,v,w)(uvw≠0)的直線l的方程為,閱讀上面材料,并解決下面問題:已知平面α的方程為x+2y﹣2z﹣4=0,直線l是兩平面3x﹣2y﹣7=0與2y﹣z+6=0的交線,則直線l與平面α所成角的大小為( )
A. arcsinB. arcsin
C. arcsinD. arcsin
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a∈R).
(1)若曲線y=f(x)在x=e處切線的斜率為﹣1,求此切線方程;
(2)若f(x)有兩個極值點x1,x2,求a的取值范圍,并證明:x1x2>x1+x2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com