已知函數(shù)f(x),如果對任意一個三角形,只要它的三邊長a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“保三角形函數(shù)”.在函數(shù)①數(shù)學(xué)公式,②f2(x)=x,③f3(x)=x2中,其中________是“保三角形函數(shù)”.(填上正確的函數(shù)序號)

①②
分析:欲判斷三個函數(shù)f(x)是不是“保三角形函數(shù)”,只須任給三角形,設(shè)它的三邊長分別為a,b,c,則a+b>c,不妨假設(shè)a≤c,b≤c,我們判斷f(a),f(b),f(c)是否滿足任意兩數(shù)之和大于第三個數(shù),即任意兩邊之和大于第三邊即可.
解答:f1(x),f2(x)是“保三角形函數(shù)”,f3(x)不是“保三角形函數(shù)”.
任給三角形,設(shè)它的三邊長分別為a,b,c,則a+b>c,不妨假設(shè)a≤c,b≤c,
由于 ,所以f1(x),f2(x)是“保三角形函數(shù)”.
對于f3(x),3,3,5可作為一個三角形的三邊長,但32+32<52,
所以不存在三角形以32,32,52為三邊長,故f3(x)不是“保三角形函數(shù)”.
故答案為:①②.
點評:要想判斷f(x)為“保三角形函數(shù)”,要經(jīng)過嚴(yán)密的論證說明f(x)滿足“保三角形函數(shù)”的概念,但要判斷f(x)不為“保三角形函數(shù)”,僅須要舉出一個反例即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=ax2+bx+c的圖象如圖,則f(x)的圖象可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+b(a>0且a≠1)的圖象如圖所示,則a,b的值分別是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如下表.
x -1 0 4 5
f(x) 1 2 2 1
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示:下列關(guān)于f(x)的命題:
①f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]是減函數(shù);
③如果當(dāng)x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為4;
④函數(shù)y=f(x)-a的零點個數(shù)可能為0、1、2、3、4個.
其中正確命題的序號是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的對稱軸方程與單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則y=f(x)的圖象可由函數(shù)g(x)=sinx的圖象(縱坐標(biāo)不變)( 。

查看答案和解析>>

同步練習(xí)冊答案