【題目】已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).現(xiàn)有下列命題:
①f(﹣x)=﹣f(x);
②f( )=2f(x)
③|f(x)|≥2|x|
其中的所有正確命題的序號是(
A.①②③
B.②③
C.①③
D.①②

【答案】A
【解析】解:∵f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1),
∴f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣f(x),即①正確;
f( )=ln(1+ )﹣ln(1﹣ )=ln( )﹣ln( )=ln( )=ln[( 2]=2ln( )=2[ln(1+x)﹣ln(1﹣x)]=2f(x),故②正確;
當x∈[0,1)時,|f(x)|≥2|x|f(x)﹣2x≥0,令g(x)=f(x)﹣2x=ln(1+x)﹣ln(1﹣x)﹣2x(x∈[0,1))
∵g′(x)= + ﹣2= ≥0,∴g(x)在[0,1)單調(diào)遞增,g(x)=f(x)﹣2x≥g(0)=0,
又f(x)≥2x,又f(x)與y=2x為奇函數(shù),所以|f(x)|≥2|x|成立,故③正確;
故正確的命題有①②③,
故選:A
【考點精析】通過靈活運用命題的真假判斷與應用,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)x=1處取得極值2.

(1)求f(x)的解析式;

(2)設函數(shù) ,若對任意的,總存在,使得成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,△ABC是圓的內(nèi)接三角形,∠BAC的平分線交圓于點D,交BC于E,過點B的圓的切線與AD的延長線交于點F,在上述條件下,給出下列四個結論:
①BD平分∠CBF;
②FB2=FDFA;
③AECE=BEDE;
④AFBD=ABBF.

所有正確結論的序號是(
A.①②
B.③④
C.①②③
D.①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù), 函數(shù) .

(1)求函數(shù)的單調(diào)區(qū)間和最小值;

(2)討論 的大小關系;

(3)求的取值范圍,使得 對任意的都成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),.

(1)當時,函數(shù),處的切線互相垂直,求的值;

(2)當函數(shù)在定義域內(nèi)不單調(diào)時,求證:

(3)是否存在實數(shù),使得對任意,都有函數(shù)的圖象在的圖象的下方?若存在,請求出最大整數(shù)的值;若不存在,請說理由.(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F為拋物線y2=x的焦點,點A,B在該拋物線上且位于x軸的兩側(cè), =2(其中O為坐標原點),則△ABO與△AFO面積之和的最小值是( )
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),.

(1)當時,函數(shù),處的切線互相垂直,求的值;

(2)當函數(shù)在定義域內(nèi)不單調(diào)時,求證:

(3)是否存在實數(shù),使得對任意,都有函數(shù)的圖象在的圖象的下方?若存在,請求出最大整數(shù)的值;若不存在,請說理由.(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某公司要在A、B兩地連線上的定點C處建造廣告牌CD,其中D為頂端,AC長35米,CB長80米,設點A、B在同一水平面上,從A和B看D的仰角分別為α和β.

(1)設計中CD是鉛垂方向,若要求α≥2β,問CD的長至多為多少(結果精確到0.01米)?
(2)施工完成后,CD與鉛垂方向有偏差,現(xiàn)在實測得α=38.12°,β=18.45°,求CD的長(結果精確到0.01米).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個機器人每一秒鐘前進一步或后退一步,程序設計師設計的程序是讓機器人以先前進3步,然后再后退2步的規(guī)律移動.如果將機器人放在數(shù)軸的原點,面向正的方向在數(shù)軸上移動(1步的距離為1個單位長度).令表示第秒時機器人所在位置的坐標,且記,則下列結論中錯誤的是( )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案