若實數(shù)a,b滿足2a+b=2,則9a+3b的最小值是( 。
A、18
B、6
C、2
3
D、2
43
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:實數(shù)a,b滿足2a+b=2,利用基本不等式的性質(zhì)與指數(shù)的運算法則即可得出.
解答: 解:∵實數(shù)a,b滿足2a+b=2,
∴9a+3b2
32a3b
=2
32a+b
=2
32
=6,當(dāng)且僅當(dāng)2a=b=1時取等號.
∴9a+3b的最小值是6.
故選:B.
點評:本題考查了基本不等式的性質(zhì)與指數(shù)的運算法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足:①對于任意的x∈R,都有f(x+1)=
1
f(x)
;②函數(shù)y=f(x+1)是偶函數(shù);③當(dāng)x∈(0,1]時,f(x)=xex,則f(-
3
2
)
,f(
21
4
)
,f(
22
3
)
從小到大的排列是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的方程為:mx-y+2+m=0,圓O:x2+y2=8,直線l與圓O相交于A,B兩點
(1)不論m為何值時,求證:直線l恒過一定點,并求出該定點;
(2)是否存在實數(shù)m,使得直線l將圓O截得的兩段弧長的比為1:3,若存在,寫出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-2,1)
,
b
=(3,x)
,若
a
b
,則x=( 。
A、0
B、6
C、-
3
2
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正實數(shù)a,b滿足ab=a+b+3,則ab的最小值為( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,若A=75°,B=60°,b=
3
,則c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某單位有職工120人,其中男職工90人,現(xiàn)采用分層抽樣(按男、女分層)抽取一個樣本,若樣本中有27名男職工,則樣本容量為(  )
A、30B、36
C、40D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正實數(shù)a,b滿足ab=32,則2a+b的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A?B,則“x∈A”是“x∈B”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案