【題目】某加油站擬建造如圖所示的鐵皮儲(chǔ)油罐(不計(jì)厚度,長(zhǎng)度單位為米),其中儲(chǔ)油罐的中間為圓柱形,左右兩端均為半球形,(為圓柱的高,為球的半徑,).假設(shè)該儲(chǔ)油罐的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為千元,半球形部分每平方米建造費(fèi)用為千元.設(shè)該儲(chǔ)油罐的建造費(fèi)用為千元.
(1) 寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(2) 若預(yù)算為萬(wàn)元,求所能建造的儲(chǔ)油罐中的最大值(精確到),并求此時(shí)儲(chǔ)油罐的體積(單位: 立方米,精確到立方米).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為調(diào)查學(xué)生喜歡“應(yīng)用統(tǒng)計(jì)”課程是否與性別有關(guān),隨機(jī)抽取了選修課程的55名學(xué)生,得到數(shù)據(jù)如下表:
喜歡統(tǒng)計(jì)課程 | 不喜歡統(tǒng)計(jì)課程 | ||
男生 | 20 | 5 | |
女生 | 10 | 20 | |
(1)判斷是否有99.5%的把握認(rèn)為喜歡“應(yīng)用統(tǒng)計(jì)”課程與性別有關(guān)?
(2)用分層抽樣的方法從喜歡統(tǒng)計(jì)課程的學(xué)生中抽取6名學(xué)生作進(jìn)一步調(diào)查,將這6名學(xué)生作為一個(gè)樣本,從中任選2人,求恰有1個(gè)男生和1個(gè)女生的概率.
臨界值參考:
0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從四所高校中選2所.
(Ⅰ)求甲、乙、丙三名同學(xué)都選高校的概率;
(Ⅱ)若已知甲同學(xué)特別喜歡高校,他必選校,另在三校中再隨機(jī)選1所;而同學(xué)乙和丙對(duì)四所高校沒(méi)有偏愛(ài),因此他們每人在四所高校中隨機(jī)選2所.
(。┣蠹淄瑢W(xué)選高校且乙、丙都未選高校的概率;
(ⅱ)記為甲、乙、丙三名同學(xué)中選校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知圓與直線相切,點(diǎn)A為圓上一動(dòng)點(diǎn),軸于點(diǎn)N,且動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)P,Q是曲線C上兩動(dòng)點(diǎn),線段的中點(diǎn)為T,,的斜率分別為,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:的短軸長(zhǎng)為2,傾斜角為的直線l與橢圓C相交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,且點(diǎn)M與坐標(biāo)原點(diǎn)O連線的斜率為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若,P是以AB為直徑的圓上的任意一點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;
(3)若正實(shí)數(shù)滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn).
(Ⅰ)求橢圓的方程,并求其離心率;
(Ⅱ)過(guò)點(diǎn)作軸的垂線,設(shè)點(diǎn)為第四象限內(nèi)一點(diǎn)且在橢圓上(點(diǎn)不在直線上),直線關(guān)于的對(duì)稱直線與橢圓交于另一點(diǎn).設(shè)為坐標(biāo)原點(diǎn),判斷直線與直線的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為直角梯形,BC∥AD,∠BAD=90°,BC=2,AD=3,四邊形ABEF為平行四邊形,AB=1,BE=2,∠EBA=60°,平面ABEF⊥平面ABCD.
(1)求證:AE⊥平面ABCD;
(2)求平面ABEF與平面FCD所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購(gòu)買土特產(chǎn)的情況,對(duì)2019年元旦期間的90位游客購(gòu)買情況進(jìn)行統(tǒng)計(jì),得到如下人數(shù)分布表.
購(gòu)買金額(元) | ||||||
人數(shù) | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購(gòu)買金額是否少于60元與性別有關(guān).
不少于60元 | 少于60元 | 合計(jì) | |
男 | 40 | ||
18 | |||
合計(jì) |
(2)為吸引游客,該超市推出一種優(yōu)惠方案,購(gòu)買金額不少于60元可抽獎(jiǎng)3次,每次中獎(jiǎng)概率為(每次抽獎(jiǎng)互不影響,且的值等于人數(shù)分布表中購(gòu)買金額不少于60元的頻率),中獎(jiǎng)1次減5元,中獎(jiǎng)2次減10元,中獎(jiǎng)3次減15元.若游客甲計(jì)劃購(gòu)買80元的土特產(chǎn),請(qǐng)列出實(shí)際付款數(shù)(元)的分布列并求其數(shù)學(xué)期望.
附:參考公式和數(shù)據(jù):,.
附表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com