【題目】某校初三(1)班、(2)班各有49名學(xué)生,兩班在一次數(shù)學(xué)測驗中的成績統(tǒng)計如下表:
(1)請你對下面的一段話給予簡要分析:
高一(1)班的小剛回家對媽媽說:“昨天的數(shù)學(xué)測驗,全班平均分為79分,得70分的人最多,我得了85分,在班里算上上游了!”
(2)請你根據(jù)表中的數(shù)據(jù),對這兩個班的數(shù)學(xué)測驗情況進行簡要分析,并提出建議.
【答案】
(1)解:由于(1)班49名學(xué)生數(shù)學(xué)測驗成績的中位數(shù)是87,則85分排在全班第25名之后,所以從位次上看,不能說85分是上游,成績應(yīng)該屬于中游.
但也不能以位次來判斷學(xué)習(xí)的好壞,小剛得了85分,說明他對這段的學(xué)習(xí)內(nèi)容掌握得較好,從掌握學(xué)習(xí)的內(nèi)容上講,也可以說屬于上游
(2)解:①班成績的中位數(shù)是87分,說明高于87分(含87)的人數(shù)占一半以上,而平均分為79分,標(biāo)準(zhǔn)差又很大,說明低分也多,兩極分化嚴(yán)重,建議加強對學(xué)習(xí)困難的學(xué)生的幫助.
②班的中位數(shù)和平均數(shù)都是79分,標(biāo)準(zhǔn)差又小,說明學(xué)生之間差別較小,學(xué)習(xí)很差的學(xué)生少,但學(xué)習(xí)優(yōu)異的也很少,建議采取措施提高優(yōu)秀率
【解析】(1)根據(jù)題意可以進行推測出答案。
(2)根據(jù)中位數(shù)、平均分、標(biāo)準(zhǔn)差的性質(zhì)可以推測出答案。
【考點精析】本題主要考查了平均數(shù)、中位數(shù)、眾數(shù)和極差、方差與標(biāo)準(zhǔn)差的相關(guān)知識點,需要掌握⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù);標(biāo)準(zhǔn)差和方差越大,數(shù)據(jù)的離散程度越大;標(biāo)準(zhǔn)差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標(biāo)準(zhǔn)差才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x﹣cos2x+1,下列結(jié)論中錯誤的是( )
A.f(x)的圖象關(guān)于( ,1)中心對稱
B.f(x)在( , )上單調(diào)遞減
C.f(x)的圖象關(guān)于x= 對稱
D.f(x)的最大值為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線x2=4y焦點為F,點A,B,C為該拋物線上不同的三點,且滿足 + + = .
(1)求|FA|+|FB|+|FC|;
(2)若直線AB交y軸于點D(0,b),求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)今信息時代,眾多高中生也配上了手機.某校為研究經(jīng)常使用手機是否對學(xué)習(xí)成績有影響,隨機抽取高三年級50名理科生的一次數(shù)學(xué)周練成績,并制成下面的2×2列聯(lián)表:
及格 | 不及格 | 合計 | |
很少使用手機 | 20 | 6 | 26 |
經(jīng)常使用手機 | 10 | 14 | 24 |
合計 | 30 | 20 | 50 |
(1)判斷是否有97.5%的把握認為經(jīng)常使用手機對學(xué)習(xí)成績有影響?
(2)從這50人中,選取一名很少使用手機的同學(xué)記為甲和一名經(jīng)常使用手機的同學(xué)記為乙,解一道數(shù)學(xué)題,甲、乙獨立解出此題的概率分別為P1 , P2 , 且P2=0.5,若|P1﹣P2|≥0.4,則此二人適合結(jié)為學(xué)習(xí)上互幫互助的“學(xué)習(xí)師徒”,記X為兩人中解出此題的人數(shù),若X的數(shù)學(xué)期望E(X)=1.4,問兩人是否適合結(jié)為“學(xué)習(xí)師徒”? 參考公式及數(shù)據(jù): ,其中n=a+b+c+d.
P(K2≥K0) | 0.10 | 0.05 | 0.025 | 0.010 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=x3+a|x2﹣1|,a∈R,則對于不同的實數(shù)a,則函數(shù)f(x)的單調(diào)區(qū)間個數(shù)不可能是( )
A.1個
B.2個
C.3個
D.5個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機的發(fā)展,微信越來越成為人們交流的一種方式.某機構(gòu)對使用微信交流的態(tài)度進行調(diào)查,隨機調(diào)查了 50 人,他們年齡的頻數(shù)分布及對使用微信交流贊成人數(shù)如表.
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(I)由以上統(tǒng)計數(shù)據(jù)填寫下面 2×2 列聯(lián)表,并判斷是否有99%的把握認為年齡45歲為分界點對使用微信交流的態(tài)度有差異;
年齡不低于45歲的人 | 年齡低于45歲的人 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若對年齡在[55,65),[65,75)的被調(diào)查人中隨機抽取兩人進行追蹤調(diào)查,記選中的4人中贊成使用微信交流的人數(shù)為X,求隨機變量X的分布列和數(shù)學(xué)期望
參考公式:K2= ,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截的線段中點M在直線x+y-3=0上,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD是邊長為1的正方形,PA⊥平面ABCD,PA=AB,M,N分別為PB,AC的中點,
(1)求證:MN∥平面PAD;
(2)求點B到平面AMN的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,已知點A的極坐標(biāo)為( , ),直線l的極坐標(biāo)方程為ρcos(θ﹣ )=a,且點A在直線l上,
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com