3.等比數(shù)列{an}中,公比為2,前四項(xiàng)和等于1,則前8項(xiàng)和等于17.

分析 利用等比數(shù)列的求和公式即可得出.

解答 解:∵$\frac{{a}_{1}({2}^{4}-1)}{2-1}$=1,解得a1=$\frac{1}{15}$.
則S8=$\frac{\frac{1}{15}×({2}^{8}-1)}{2-1}$=17.
故答案為:17.

點(diǎn)評(píng) 本題考查了等比數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若集合{1,$\frac{a}$,a}={0,a+b,a2},則a2+b3=( 。
A.-1B.1C.0D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知雙曲線$\frac{x^2}{16}-\frac{y^2}{9}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,若雙曲線上一點(diǎn)P滿足∠F1PF2=60°,則△F1PF2的面積為( 。
A.$9\sqrt{3}$B.9C.18D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知$acosC+\sqrt{3}asinC-b-c=0$.
(1)求角A的大小;
(2)若a=7,b+c=11,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=(k-x)ex-x-3.
(1)當(dāng)k=1時(shí),求f(x)在(0,f(0))處的切線方程;
(2)若f(x)<0對(duì)任意x>0恒成立,求整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.$y=sin({2x+\frac{5π}{2}})$的圖象的一條對(duì)稱軸是( 。
A.$-\frac{π}{4}$B.$-\frac{π}{2}$C.$\frac{π}{8}$D.$\frac{5π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知數(shù)列{an}的前n項(xiàng)和為Sn,若nSn+(n+2)an=4n,則下列說(shuō)法正確的是( 。
A.數(shù)列{an}是以1為首項(xiàng)的等比數(shù)列B.數(shù)列{an}的通項(xiàng)公式為${a_n}=\frac{n+1}{2^n}$
C.數(shù)列$\left\{{\frac{a_n}{n}}\right\}$是等比數(shù)列,且公比為$\frac{1}{2}$D.數(shù)列$\left\{{\frac{S_n}{n}}\right\}$是等比數(shù)列,且公比為$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.(x-1)(2x-$\frac{1}{x}$)5的二項(xiàng)展開(kāi)式中常數(shù)項(xiàng)為-40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若a>b>0,c>1,則( 。
A.logac>logbcB.logca>logcbC.ac<bcD.ca<cb

查看答案和解析>>

同步練習(xí)冊(cè)答案