分析 由條件利用拋物線的定義和簡(jiǎn)單性質(zhì)可得當(dāng)P、A、F三點(diǎn)共線時(shí),|PA|+|PF|的最小值為yA-(-1),從而得出結(jié)論.
解答 解:∵拋物線x2=4y的焦點(diǎn)F(0,1 )、準(zhǔn)線為y=-1,
∵點(diǎn)A(-1,6),P為拋物線上一點(diǎn),故當(dāng)P、A、F三點(diǎn)共線時(shí),
|PA|+|PF|的最小值為yA-(-1)=6+1=7,
故答案為:7.
點(diǎn)評(píng) 本題主要考查拋物線的定義和簡(jiǎn)單性質(zhì),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-5,5) | B. | (-12,12) | C. | (-13,13) | D. | (-15,15) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{3}$,$\frac{10}{3}$] | B. | [-$\frac{1}{3}$,$\frac{8}{3}$] | C. | [-$\frac{2}{3}$,$\frac{14}{3}$] | D. | [-$\frac{2}{3}$,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 17 | B. | 18 | C. | 19 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2] | B. | [-2,+∞) | C. | (2,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com