2.(1)已知直線l1:ax+2y+6=0和直線${l_2}:x+(a-1)y+{a^2}-1=0$.當(dāng)l1∥l2時(shí),求a的值.
(2)已知點(diǎn)P(2,-1),求過P點(diǎn)且與原點(diǎn)距離最大的直線l的方程,并求出最大距離.

分析 (1)利用直線平行的性質(zhì)求解.
(2)過P點(diǎn)與原點(diǎn)O距離最大的直線是過P點(diǎn)且與PO垂直的直線,求出斜率,利用點(diǎn)斜式可得直線方程,再利用點(diǎn)到直線的距離公式求出距離即可;

解答 解:(1)由A1B2-A2B1=0,得a(a-1)-1×2=0,
由B1C2-B2C1≠0,得2(a2-1)-6(a-1)≠0,∴a=-1
(2)過P點(diǎn)且與原點(diǎn)距離最大的直線,是過P點(diǎn)且與OP垂直的直線,
由l⊥OP得klkOP=-1.所以kl=2.
由直線方程的點(diǎn)斜式得y+1=2(x-2),即2x-y-5=0,
所以直線2x-y-5=0是過P點(diǎn)且與原點(diǎn)距離最大的直線,最大距離為$d=\frac{{|{-5}|}}{{\sqrt{5}}}=\sqrt{5}$.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意直線平行的性質(zhì)的靈活運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)函數(shù)f(x)=($\frac{sinB}{cosA}$)x+($\frac{sinA}{cosB}$)x,其中A、B為△ABC的內(nèi)角,如果對(duì)任意x>0都有f(x)<2,那么(  )
A.0<A+B<$\frac{π}{4}$B.0<A+B<$\frac{π}{2}$C.$\frac{π}{2}$<A+B<$\frac{3π}{4}$D.A+B>$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.化簡(jiǎn)$\frac{cos2α}{{4{{sin}^2}(\frac{π}{4}+α)tan(\frac{π}{4}-α)}}$=( 。
A.cosαB.sinαC.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,E,F(xiàn)分別是三棱柱ABC-A1B1C1的棱AC,A1C1的中點(diǎn),證明:平面AB1F∥平面BC1E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,將正方形ABCD沿對(duì)角線AC折成一個(gè)直二面角,則異面直線AB和CD所成的角是( 。
 
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-2x.
(Ⅰ)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,求a的取值范圍;
(Ⅱ)若a=-$\frac{1}{2}$且關(guān)于x的方程f(x)=-$\frac{1}{2}$x+b在(1,4)上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)=sin(\frac{π}{3}x+φ)(|φ|<\frac{π}{2})$的圖象關(guān)于直線x=1對(duì)稱,把f(x)的圖象向右平移3個(gè)單位長度后,所得圖象對(duì)應(yīng)的函數(shù)解析式為(  )
A.y=sin($\frac{π}{3}$x+$\frac{π}{6}$)B.y=sin($\frac{π}{3}$x-$\frac{π}{6}$)C.y=cos($\frac{π}{3}$x+$\frac{π}{6}$)D.y=sin($\frac{π}{3}$x-$\frac{5π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一條光線從點(diǎn)(-2,-3)射出,經(jīng)y軸反射后與圓(x+3)2+(y-2)2=1相切,則入射光線所在直線的斜率為( 。
A.$\frac{3}{2}$或$\frac{2}{3}$B.$\frac{4}{3}$或$\frac{3}{4}$C.$\frac{5}{3}或\frac{3}{5}$D.$\frac{5}{4}或\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知橢圓$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1,則此橢圓的長半軸長10,離心率為$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案