12.已知$\frac{3π}{4}$<α<π,tanα+$\frac{1}{tanα}$=-$\frac{10}{3}$.
(1)求tanα的值;
(2)求$\frac{si{n}^{2}(π+α)+2sinαsin(\frac{π}{2}+α)+1}{3sinαcos(\frac{π}{2}-α)-2cosαcos(π-α)}$的值.

分析 (1)由條件解方程求得tanα的值,再根據(jù)α的范圍,進(jìn)一步確定tanα的值.
(2)由條件利用 誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系,求得所給式子的值.

解答 解:(1)因?yàn)閠an α+$\frac{1}{tanα}$=-$\frac{10}{3}$,所以3tan2α+10tan α+3=0,
解得tan α=-$\frac{1}{3}$或tan α=-3.
因?yàn)?\frac{3π}{4}$<α<π,所以-1<tanα<0,所以tanα=-$\frac{1}{3}$.
(2)原式=$\frac{{sin}^{2}α+2sinαcosα+1}{{3sin}^{2}α+{2cos}^{2}α}$=$\frac{{2sin}^{2}α+2sinαcosα{+cos}^{2}α}{{3sin}^{2}α+{2cos}^{2}α}$=$\frac{{2tan}^{2}α+2tanα+1}{{3tan}^{2}α+2}$=$\frac{5}{21}$.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知$f(x)=\left\{{\begin{array}{l}{\frac{1}{x},x>0}\\{{2^x},x≤0}\end{array}}\right.$,則f(f(-1))=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=${(\frac{1}{3})^x}$-1,x∈[-1,1]的值域是$[-\frac{2}{3},2]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知平面向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,3).若向量$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow$),則實(shí)數(shù)λ的值是-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若數(shù)列{an}中,a1=$\frac{1}{3}$,an+1=$\frac{n+1}{3n}$an
(Ⅰ)證明:{$\frac{{a}_{n}}{n}$}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(Ⅱ)若{an}的前n項(xiàng)和為Sn,求證Sn$<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知二次函數(shù)h(x)=ax2+bx+2,其導(dǎo)函數(shù)y=h′(x)的圖象如圖,f(x)=6lnx+h(x).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)在區(qū)間$({1,m+\frac{1}{2}})$上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=2sin(ωx+φ)的部分圖象如圖所示,其中A,B兩點(diǎn)之間的距離為5,那么下列說法正確的是(  )
A.函數(shù)f(x)的最小正周期為8
B.f(3)=-$\frac{1}{2}$
C.x=$\frac{3}{2}$是函數(shù)f(x)的一條對稱軸
D.函數(shù)f(x)向右平移一個(gè)單位長度后所得的函數(shù)為偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知{an}是各項(xiàng)為正數(shù)的等比數(shù)列,Sn為前n項(xiàng)和,滿足$\frac{2}{{a}_{3}}$+$\frac{1}{{a}_{4}}$=$\frac{1}{{a}_{5}}$,a3•S3=$\frac{7}{64}$.
(Ⅰ)求an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)積為Tn,求所有的正整數(shù)k,使得對任意的n∈N*,不等式Sn+k+$\frac{{T}_{n}}{4}$<1恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線f(x)=$\frac{1}{3}$x3+ax2+3x-$\frac{5}{6}$(a>-2)在點(diǎn)(1,f(1))處的切線l與坐標(biāo)軸轉(zhuǎn)成的三角形的面積為$\frac{2}{5}$.
(1)求實(shí)數(shù)a的值;
(2)若a>0,且對?x1,x2∈[-1,1],2${\;}^{f({x}_{1})-f({x}_{2})-6}$<$\root{3}{m}$恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案