給出下列五個(gè)命題,正確的有

①若a≠0,且a·b=0,則b=0;②若a≠0,且a·b=a·c,則b=c;③若,則a=b或a=-b;④(a·b)·c=a·(b·c);⑤若|a·b|=|a||b|,則a//b

A.4個(gè)

B.3個(gè)

C.2個(gè)

D.1個(gè)

答案:D
提示:

提示:僅⑤正確.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)命題:
(1)函數(shù)y=|sin(2x+
π
3
)-
1
3
|
的最小正周期是π.
(2)函數(shù)y=sin(x-
3
2
π)
在區(qū)間[π,
3
2
π]
上單調(diào)遞增;
(3)直線x=
5
4
π
是函數(shù)y=sin(2x+
5
2
π)
的圖象的一條對稱軸;
(4)函數(shù)y=sinx+
4
sinx
,x∈(0,π)
的最小值為4;
(5)函數(shù)y=tan
x
2
-cscx
的一個(gè)對稱中心為點(diǎn)(π,0).
其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)命題:
①函數(shù)y=tanx的圖象關(guān)于點(diǎn)(kπ+
π
2
,0)(k∈Z)對稱;
②函數(shù)f(x)=sin|x|是最小正周期為π的周期函數(shù);
③設(shè)θ為第二象限的角,則tan
θ
2
>cos
θ
2
,且sin
θ
2
>cos
θ
2
;
④函數(shù)y=cos2x+sinx的最小值為-1.
其中正確的命題是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)命題:
(1)函數(shù)y=-sin(kπ+x)(k∈Z)是奇函數(shù);
(2)函數(shù)f(x)=tanx的圖象關(guān)于點(diǎn)(kπ+
π
2
,0)(k∈Z)
對稱;
(3)函數(shù)f(x)=sin|x|是最小正周期為π的周期函數(shù);
(4)設(shè)θ是第二象限角,則tan
θ
2
>cot
θ
2
,且sin
θ
2
>cos
θ
2

(5)函數(shù)y=cos2x+sinx的最小值是-1.
其中正確的命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)命題,其中正確命題的序號為

①函數(shù)y=|sin(2x+
π
3
)-
1
3
|的最小正周期是
π
2
;
②函數(shù)y=sin(x-
2
)在區(qū)間[π,
2
]上單調(diào)遞減;
③直線x=
4
是函數(shù)y=sin(2x+
2
)的圖象的一條對稱軸;
④函數(shù)y=sinx+
4
sinx
,x∈(0,π)的最小值是4;
⑤函數(shù)y=tan
x
2
-cscx的一個(gè)對稱中心為點(diǎn)(π,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•資中縣模擬)已知二次函數(shù)f(x)=x2-mx+m(x∈R)同時(shí)滿足:(1)不等式f(x)≤0的解集有且只有一個(gè)元素;(2)在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n),bn=1-
8-man
,我們把所有滿足bi•bi+1<0的正整數(shù)i的個(gè)數(shù)叫做數(shù)列{bn}的異號數(shù).根據(jù)以上信息,給出下列五個(gè)命題:
①m=0;
②m=4;
③數(shù)列{an}的通項(xiàng)公式為an=2n-5;
④數(shù)列{bn}的異號數(shù)為2;
⑤數(shù)列{bn}的異號數(shù)為3.
其中正確命題的序號為
②⑤
②⑤
.(寫出所有正確命題的序號)

查看答案和解析>>

同步練習(xí)冊答案