已知函數(shù)f(x)=2sinx(
3
cosx-sinx)+1,若y=f(x-φ)為奇函數(shù),則φ的一個(gè)值為( 。
A、
π
12
B、
π
4
C、
π
3
D、
π
2
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:由三角函數(shù)中的恒等變換應(yīng)用化簡(jiǎn)函數(shù)解析式得f(x)=2sin(2x+
π
6
),從而可得f(x-φ)=2sin(2x-2φ+
π
6
),由f(x-φ)為奇函數(shù),可得-2φ+
π
6
=kπ,k∈Z,對(duì)比選項(xiàng)即可得解.
解答: 解:∵f(x)=2sinx(
3
cosx-sinx)+1=
3
sin2x-(1-cos2x)+1=2sin(2x+
π
6
).
∴f(x-φ)=2sin[2(x-φ)+
π
6
]=2sin(2x-2φ+
π
6
).
∵y=f(x-φ)為奇函數(shù),
∴-2φ+
π
6
=kπ,k∈Z,可解得φ=
π
12
-
2
,k∈Z,
∴當(dāng)k=0時(shí),φ=
π
12

故選:A.
點(diǎn)評(píng):本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象和性質(zhì),屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某研究機(jī)構(gòu)對(duì)兒童記憶能力x和識(shí)圖能力y進(jìn)行統(tǒng)計(jì)分析,得到如下數(shù)據(jù):
記憶能力x46810
識(shí)圖能力y3568
由表中數(shù)據(jù),求得線性回歸方程為
y
=
4
5
x+
a
,若某兒童的記憶能力為12時(shí),則他的識(shí)圖能力為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序圖,若輸入x=2,則輸出的所有x的值的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:1+
1
2
+
1
3
+
…+
1
2n-1
<n.(n>1,n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cosx•sin(x+
π
3
)-
3
cos2x+
3
4
,x∈R則f(x)在閉區(qū)間[-
π
4
,
π
4
]上的最大值和最小值分別為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入數(shù)據(jù)n=3,a1=1,a2=2,a3=3,則輸出的結(jié)果為( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如右圖二面角α-y-β的大小為60°,平面β上的曲線C1在平面α上的正射影為曲線C2,C2在直角坐標(biāo)系xOy下的方程x2+y2=1(0≤x≤1),則曲線C1的離心率( 。
A、e=1
B、e>1
C、e=
3
2
D、e=
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市為了了解“陜西分類招生考試”宣傳情況,從A,B,C,D四所中學(xué)的學(xué)生當(dāng)中隨機(jī)抽取50名學(xué)生參加問卷調(diào)查,已知A,B,C,D四所中學(xué)各抽取的學(xué)生人數(shù)分別為15,20,10,5.
(Ⅰ)從參加問卷調(diào)查的50名學(xué)生中隨機(jī)抽取兩名學(xué)生,求這兩名學(xué)生來自同一所中學(xué)的概率;
(Ⅱ)在參加問卷調(diào)查的50名學(xué)生中,從來自A,C兩所中學(xué)的學(xué)生當(dāng)中隨機(jī)抽取兩名學(xué)生,用ξ表示抽得A中學(xué)的學(xué)生人數(shù),求ξ的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若全集U=R,集合A={x|x2+x-2≤0},B={y|y=log2(x+3),x∈A},則集合A∩(∁UB)=( 。
A、{x|-2≤x<0}
B、{x|0≤x≤1}
C、{x|-3<x≤-2}
D、{x|x≤-3}

查看答案和解析>>

同步練習(xí)冊(cè)答案