(2011•花都區(qū)模擬)在△ABC中,已知AB=4,BC=3,AC=
37
,則△ABC的最大角的大小為
120°
120°
分析:由三角形的三邊的大小,根據(jù)大邊對(duì)大角可得AC所對(duì)的角為最大角,即B為三角形的最大角,利用余弦定理表示出cosB,把已知的三邊長(zhǎng)代入求出cosB的值,由B為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出B的度數(shù),即為三角形最大角的度數(shù).
解答:解:∵AB=c=4,BC=a=3,AC=b=
37

∴b>c>a,即b為最大邊,
∴B為最大角,
由余弦定理得:cosB=
a2+c2-b2
2ac
=
9+16-37
24
=-
1
2
,
又B∈(0,180°),
∴B=120°,
則△ABC的最大角的大小為120°.
故答案為:120°
點(diǎn)評(píng):此題考查了余弦定理,三角形的邊角關(guān)系,以及特殊角的三角函數(shù)值,余弦定理很好的建立了三角形的邊角關(guān)系,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•花都區(qū)模擬)如圖,一個(gè)空間幾何體的正視圖、側(cè)視圖、俯視圖為全等的等腰直角三角形,如果直角三角形的直角邊長(zhǎng)為2,那么 這個(gè)幾何體的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•花都區(qū)模擬)某流感病研究中心對(duì)溫差與甲型H1N1病毒感染數(shù)之間的相關(guān)關(guān)系進(jìn)行研究,他們每天將實(shí)驗(yàn)室放入數(shù)量相同的甲型H1N1病毒和100頭豬,然后分別記錄了4月1日至4月5日每天晝夜溫差與實(shí)驗(yàn)室里100頭豬的感染數(shù),得到如下資料:
日  期 4月1日 4月2日 4月3日 4月4日 4月5日
溫  差 10 13 11 12 7
感染數(shù) 23 32 24 29 17
(1)求這5天的平均感染數(shù);
(2)從4月1日至4月5日中任取2天,記感染數(shù)分別為x,y用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)視為同一事件,并求|x-y|≥9的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•花都區(qū)模擬)若直線l:ax+by+1=0始終平分圓M:x2+y2+4x+2y+1=0的周長(zhǎng),則(a-2)2+(b-2)2的最小值為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•花都區(qū)模擬)等差數(shù)列{an} 中,a1=3,前n項(xiàng)和為Sn,等比數(shù)列 {bn}各項(xiàng)均為正數(shù),b1=1,且b2+S2=12,{bn}的公比q=
S2
b2

(1)求an與bn;
(2)求數(shù)列{
1
Sn
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•花都區(qū)模擬)函數(shù)y=sin(
1
2
ωx+
π
6
),(ω>0)的最小正周期是4π,則ω=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案