【題目】已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和函數(shù)的單調遞增區(qū)間;
(2)已知△ABC中,角A,B,C的對邊分別為a,b,c,若 ,求AB.
【答案】
(1)解:函數(shù) ,
化解可得:f(x)=2sin2xcos +cos2x+1= sin2x+cos2x+1=2sin(2x+ )+1.
∴函數(shù)f(x)的最小正周期T= ,
由 得 ,
故函數(shù)f(x)的單調遞增區(qū)間
(2)解:∵ ,
∴ ,
∵0<A<π,
∴ ,
∴ ,
,
在△ABC中,由正弦定理得: ,
即 .
,即
【解析】(1)利用二倍角和兩角和與差以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,最后將內層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調遞增區(qū)間;(2)根據f(A)=3時,求解A,正弦定理求解b,再有余弦可得AB即c的值(或者求解sinC,正弦定理求解c)
科目:高中數(shù)學 來源: 題型:
【題目】下面給出的關系式中正確的個數(shù)是( )
① =
② =
③ 2=| |2
④( ) = ( )
⑤| |≤ .
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 與 .
(Ⅰ)若 在 方向上的投影為 ,求λ的值;
(Ⅱ)命題P:向量 與 的夾角為銳角;
命題q: ,其中向量 , =( )(λ,α∈R).若“p或q”為真命題,“p且q”為假命題,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交警隨機抽取了途徑某服務站的40輛小型轎車在經過某區(qū)間路段的車速(單位: ),現(xiàn)將其分成六組為后得到如圖所示的頻率分布直方圖.
(1)某小型轎車途經該路段,其速度在以上的概率是多少?
(2)若對車速在兩組內進一步抽測兩輛小型轎車,求至少有一輛小型轎車速度在內的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線的極坐標方程為,曲線的極坐標方程為.
(1)設為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地最近十年對某商品的需求量逐年上升,下表是部分統(tǒng)計數(shù)據:
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
需要量(萬件) | 236 | 246 | 257 | 276 | 286 |
(1)利用所給數(shù)據求年需求量y與年份x之間的回歸直線方程 = x+ ;
(2)預測該地2018年的商品需求量(結果保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】要測量底部不能到達的電視塔AB的高度,在C點測得塔頂A的仰角是45°,在D點測得塔頂A的仰角是30°,并測得水平面上的∠BCD=120°,CD=40m,則電視塔的高度為( )
A.40m
B.20m
C.305m
D.(20 ﹣40)m
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式,并寫出f(x)的單調減區(qū)間;
(2)已知△ABC的內角分別是A,B,C,A為銳角,且f ,求cosA的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com