(本題滿分12分)
已知為實數(shù),,的導函數(shù).
(1)求導數(shù);
(2)若,求上的最大值和最小值;
(3)若上都是遞增的,求的取值范圍.
(1).
(2)上的最大值為,最小值為.
(3).
本試題主要是考查了導數(shù)的幾何意義的運用和導數(shù)在研究函數(shù)最值的思想的運用,和利用單調(diào)性,逆向求解參數(shù)的取值范圍的綜合運用。
(1)主要是考查了初等函數(shù)的導數(shù)的計算。
(2)由由,得得到解析式,然后確定解析式后再求解導數(shù),分析函數(shù)的單調(diào)性,得到最值。
(3)如果函數(shù)在給定區(qū)間單調(diào)遞增,說明在該區(qū)間導數(shù)值恒大于等于零,分離參數(shù)的思想求解得到。
解:(1).
(2).
,得,此時,,
,得.
,
上的最大值為,最小值為.
(3)解法一,
依題意:恒成立,即
,所以
恒成立,即
,所以
綜上: .
解法二的圖像是開口向上且過點的拋物線,由條件得,
,.解得. 的取值范圍為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)滿足且對于任意, 恒有成立
(1)求實數(shù)的值;  (2)解不等式
(3)當時,函數(shù)是單調(diào)函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
(理)(1)證明不等式:
(2)已知函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍.
(3)若關于x的不等式上恒成立,求實數(shù)的最大值.
(文)已知函數(shù)的導函數(shù)的圖象關于直線x=2對稱.
(Ⅰ)求b的值;
(Ⅱ)若處取得極小值,記此極小值為,求的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù).
(1)求在[0,1]上的極值;
(2)若對任意,不等式成立,求實數(shù)的取值范圍;
(3)若關于的方程在[0,1]上恰有兩個不同的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)處取得極小值
(1)求m的值。
(2)若上是增函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)已知是函數(shù)的一個極值點.
(Ⅰ)求
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若直線與函數(shù)的圖象有3個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知
(1)若,試判斷函數(shù)在定義域內(nèi)的單調(diào)性;
(2)若上恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)當時,求函數(shù)的最小值;
(2)若上單調(diào)遞增,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是函數(shù)的導函數(shù),若函數(shù)在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍是(      )
A.B.C.D.

查看答案和解析>>

同步練習冊答案