精英家教網 > 高中數學 > 題目詳情

已知函數 , ,且函數在區(qū)間(2,+∞)上是減函數,則

的值         .

 

【答案】

或者

【解析】(1),由于函數在(2,+∞)上遞減,所以

 

,所以或者

時,;時,

 

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的圖象與X軸的交點中,相鄰兩個交點之間的距離為
π
2
,且圖象上一個最低點為M(
3
,-2

(Ⅰ)求f(x)的解析式.
(Ⅱ)求函教f(x)單調遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出如下命題:
命題p:已知函數y=f(x)=
1-x3
,則|f(a)|<2(其中f(a)表示函數y=f(x)在x=a時的函數值);
命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求實數a的取值范圍,使命題p,q中有且只有一個為真命題.

查看答案和解析>>

科目:高中數學 來源:2014屆湖北孝感高中高三年級九月調研考試理科數學試卷(解析版) 題型:解答題

已知函數的定義域為,若上為增函數,則稱為“一階比增函數”;若上為增函數,則稱為“二階比增函數”.我們把所有“一階比增函數”組成的集合記為,所有“二階比增函數”組成的集合記為.

(Ⅰ)已知函數,若,求實數的取值范圍;

(Ⅱ)已知,的部分函數值由下表給出,

 求證:;

(Ⅲ)定義集合

請問:是否存在常數,使得,有成立?若存在,求出的最小值;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數的定義域為,若上為增函數,則稱為“一階比增函數”;若上為增函數,則稱為“二階比增函數”.

我們把所有“一階比增函數”組成的集合記為,所有“二階比增函數”組成的集合記為.

(Ⅰ)已知函數,若,求實數的取值范圍;

(Ⅱ)已知,的部分函數值由下表給出,

 求證:;

(Ⅲ)定義集合

請問:是否存在常數,使得,有成立?若存在,求出的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數的定義域為,若上為增函數,則稱為“一階比增函數”;若上為增函數,則稱為“二階比增函數”.

我們把所有“一階比增函數”組成的集合記為,所有“二階比增函數”組成的集合記為.

(Ⅰ)已知函數,若,求實數的取值范圍;

(Ⅱ)已知,的部分函數值由下表給出,

 求證:

(Ⅲ)定義集合

請問:是否存在常數,使得,,有成立?若存在,求出的最小值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案