【題目】已知函數(shù),

(1)當a=1時,求曲線數(shù)在點(1, )處的切線方程;

(2)時,函數(shù)數(shù)的最小值為0,求a的取值范圍。

【答案】(1) (2)

【解析】試題分析:(1) , ,所以曲線在點處的切線方程為;(2),對字母a分類討論研究函數(shù)的單調(diào)性,從而確定函數(shù)的最小值,得到結(jié)果.

試題解析:

(Ⅰ )當時, ,

,

所以曲線在點處的切線方程為

.

()

時, ,所以函數(shù)在上為減函數(shù),而,故此時不符合題意;

時,任意都有,所以函數(shù)在上為減函數(shù),而

故此時不符合題意;

時,由,得: 時, ,所以函數(shù)在上為減函數(shù),而,故此時不符合題意;

時,

此時函數(shù)在上為增函數(shù),所以,即函數(shù)的最小值為0,符合題意,

綜上a的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某超市連鎖店統(tǒng)計了城市甲、乙的各16臺自動售貨機在中午12:00至13:00間的銷售金額,并用莖葉圖表示如圖.則有(
A.甲城銷售額多,乙城不夠穩(wěn)定
B.甲城銷售額多,乙城穩(wěn)定
C.乙城銷售額多,甲城穩(wěn)定
D.乙城銷售額多,甲城不夠穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3ax﹣1,a≠0
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=﹣1處取得極值,直線y=m與y=f(x)的圖象有三個不同的交點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點P是圓O:x2+y2=1與x軸正半軸的交點,半徑OA在x軸的上方,現(xiàn)將半徑OA繞原點O逆時針旋轉(zhuǎn) 得到半徑OB.設(shè)∠POA=x(0<x<π),
(1)若 ,求點B的坐標;
(2)求函數(shù)f(x)的最小值,并求此時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)無窮等差數(shù)列{an}的前n項和為Sn , 已知a1=1,S3=12.
(1)求a24與S7的值;
(2)已知m、n均為正整數(shù),滿足am=Sn . 試求所有n的值構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點P在正方體ABCD﹣A1B1C1D1的面對角線BC1上運動,則下列四個結(jié)論:
①三棱錐A﹣D1PC的體積不變;
②A1P∥平面ACD1;
③DP⊥BC1
④平面PDB1⊥平面ACD1
其中正確的結(jié)論的個數(shù)是(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)=x3+x,x∈R,當0≤θ≤π時,f(mcosθ)+f(sinθ﹣2m)<0恒成立,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第26屆世界大學生夏季運動會將于2011年8月12日到23日在深圳舉行 ,為了搞好接待工作,組委會在某學院招募了12名男志愿者和18名女志愿者。將這30名志愿者的身高編成如右所示的莖葉圖(單位:cm):

若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下(不包括175cm)定義為“非高個子”,且只有“女高個子”才擔任“禮儀小姐”。

(1)如果用分層抽樣的方法從“高個子”和“非高個子”中提取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少?

(2)若從所有“高個子”中選3名志愿者,用表示所選志愿者中能擔任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 =(1,2), =(﹣3,2), 當k=時,(1)k + ﹣3 垂直;
當k=時,(2)k + ﹣3 平行.

查看答案和解析>>

同步練習冊答案