如圖,在斜三棱柱中,側面,,底面是邊長為的正三角形,其重心為點,是線段上一點,且

(1)求證:側面;
(2)求平面與底面所成銳二面角的正切值.
(1)證明:連接并延長與交于點,則由題
意及相似關系可知點的中點,所以三點共線,
從而可得,因此側面
(2)

試題分析:(1)要證明直線側面,即證明平行于側面的某條直線,而由題意及相似關系易知,即可證明之;
(2)這問的關鍵是找出平面與底面所成二面角的平面角,由側面底面知,過點作的垂線與的延長線交于點,則平面,經(jīng)過點作的垂線與的延長線交于點,則,于是即為所求二面角的平面角,然后根據(jù)相似關系可求該二面角的平面角的正切值.

試題解析:(1)證明:連接并延長與交于點,則由題意及相似關系可知點的中點,
所以三點共線,從而可得,因此側面
(2)經(jīng)過點作的垂線與的延長線交于點,則平面,經(jīng)過點作的垂線與的延長線交于點,則,所以即為所求二面角的平面角且,則,并由相似關系得:,故,即為所求二面角的正切值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四棱錐的底面為直角梯形,,底面,且,的中點.

(1)證明:面
(2)求所成的角的余弦值;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐中,,底面為梯形,,且.(10分)

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱柱中,側面為菱形,的中點為,且平面.

證明:
,求三棱柱的高.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(2011•山東)如圖,在四棱臺ABCD﹣A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四邊形,AB=2AD,AD=A1B1,∠BAD=60°.
(1)證明:AA1⊥BD;
(2)證明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在棱長為的正方體中,、分別是的中點,求點到截面的距離              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將邊長為2,銳角為的菱形沿較短對角線折成二面角,點分別為的中點,給出下列四個命題:
;②是異面直線的公垂線;③當二面角是直二面角時,間的距離為;④垂直于截面.
其中正確的是              (將正確命題的序號全填上).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列四個命題中,正確命題的個數(shù)是(    )個
① 若平面平面,直線平面,則;
② 若平面平面,且平面平面,則
③平面平面,且,點,,若直線,則;
④直線為異面直線,且平面,平面,若,則.
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若向量,且的夾角余弦為,則等于(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案