精英家教網 > 高中數學 > 題目詳情
設橢圓M:(a>b>0)的離心率為,長軸長為,設過右焦點F傾斜角為θ的直線交橢圓M于A,B兩點.
(Ⅰ)求橢圓M的方程;
(Ⅱ)求證|AB|=;
(Ⅲ)設過右焦點F且與直線AB垂直的直線交橢圓M于C,D,求|AB|+|CD|的最小值.
【答案】分析:(Ⅰ)由橢圓的性質求解.
(Ⅱ)將直線和橢圓方程聯(lián)立,用韋達定理,再用弦長公式求解.
(III)用(II)的方法表示出|CD|,再有|AB|+|CD|=+=,再用三角函數求得最值.
解答:解:(Ⅰ)根據題意可得:

所求橢圓M的方程為(4分)
(Ⅱ)當θ≠,設直線AB的斜率為k=tanθ,焦點F(3,0),
則直線AB的方程為y=k(x-3)
⇒(1+2k2)x2-12k2x+18(k2-1)=0
設點A(x1,y1),B(x2,y2
有x1+x2=,x1x2=
|AB|=**(6分)
又因為k=tanθ=代入**式得
|AB|=(8分)
當θ=時,直線AB的方程為x=3,
此時|AB|=(10分)
而當θ=時,|AB|==
綜上所述所以|AB|=(11分)
(Ⅲ)過右焦點F且與直線AB垂直的直線交橢圓M于C,D,
同理可得|CD|==(12分)
有|AB|+|CD|=+=
因為sin2θ∈[0,1],
所以當且僅當sin2θ=1時,
|AB|+|CD|有最小值是(16分)
點評:本題主要考查橢圓方程的求法和直線與橢圓中弦長公式的應用,滲透了函數求最值的問題.
練習冊系列答案
相關習題

科目:高中數學 來源:2012-2013學年江蘇省徐州七中高考數學模擬試卷(解析版) 題型:解答題

設橢圓M:(a>b>0)的離心率為,長軸長為,設過右焦點F傾斜角為θ的直線交橢圓M于A,B兩點.
(Ⅰ)求橢圓M的方程;
(Ⅱ)求證|AB|=;
(Ⅲ)設過右焦點F且與直線AB垂直的直線交橢圓M于C,D,求|AB|+|CD|的最小值.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年河南省四校高三第二次聯(lián)考數學試卷(文科)(解析版) 題型:解答題

設橢圓M:(a>b>0)的離心率與雙曲線x2-y2=1的離心率互為倒數,且內切于圓x2+y2=4.
(1)求橢圓M的方程;
(2)若直線y=x+m交橢圓于A、B兩點,橢圓上一點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數學 來源:2011年山東省高考數學仿真押題試卷01(文科)(解析版) 題型:解答題

設橢圓M:(a>b>0)的離心率與雙曲線x2-y2=1的離心率互為倒數,且內切于圓x2+y2=4.
(1)求橢圓M的方程;
(2)若直線y=x+m交橢圓于A、B兩點,橢圓上一點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數學 來源:2010年山東省高考數學模擬試卷1(文科)(解析版) 題型:解答題

設橢圓M:(a>b>0)的離心率為,長軸長為,設過右焦點F傾斜角為θ的直線交橢圓M于A,B兩點.
(Ⅰ)求橢圓M的方程;
(2)設過右焦點F且與直線AB垂直的直線交橢圓M于C,D,求|AB|+|CD|的最小值.

查看答案和解析>>

同步練習冊答案