【題目】已知函數(shù)的部分圖象如圖所示.
(1)求函數(shù)的解析式;
(2)設(shè),且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍和這兩個(gè)根的和.
【答案】(1);(2)或,當(dāng)時(shí),兩根和為,當(dāng)時(shí),兩根和為.
【解析】
試題分析:(1)由函數(shù)圖象的頂點(diǎn)坐標(biāo)可知,由圖象過,可求得的值,由五點(diǎn)法可求得的值,由此得到了函數(shù)的解析式;(2)在同一坐標(biāo)系下畫出和直線的圖象,結(jié)合正弦函數(shù)的圖象的特征,數(shù)形結(jié)合求得實(shí)數(shù)的取值范圍和這兩個(gè)根的和.
試題解析:(1)顯然,又圖象過(0,1)點(diǎn),∴f(0)=1,
∴sinφ=,∵|φ|<,∴φ=;
由圖象結(jié)合“五點(diǎn)法”可知,對應(yīng)函數(shù)y=sinx圖象的點(diǎn)(2π,0),
∴ω·+=2π,得ω=2.
所以所求的函數(shù)的解析式為:f(x)=2sin.
(2)如圖所示,在同一坐標(biāo)系中畫出和y=m(m∈R)的圖象,
由圖可知,當(dāng)-2<m<0或<m<2時(shí),直線y=m與曲線有兩個(gè)不同的交點(diǎn),即原方程有兩個(gè)不同的實(shí)數(shù)根. ∴m的取值范圍為:-2<m<0或<m<2
當(dāng)-2<m<0時(shí),兩根和為;當(dāng)<m<2時(shí),兩根和為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點(diǎn),,且圓心在直線上
(1)求圓C的方程.
(2)過點(diǎn)的直線與圓C交于A,B兩點(diǎn),問:在直線上是否存在定點(diǎn)N,使得(,分別為直線AN,BN的斜率)恒成立?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)若函數(shù)在上單調(diào)遞增,求a的取值范圍;
(2)用反證法證明:函數(shù)不可能為上的單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=a-bcos(b>0)的最大值為,最小值為-.
(1)求a,b的值;
(2)求函數(shù)g(x)=-4asin的最小值并求出對應(yīng)x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=AA1=A1C=2,平面ACC1A1⊥平面ABC.現(xiàn)以邊AC的中點(diǎn)D為坐標(biāo)原點(diǎn),平面ABC內(nèi)垂直于AC的直線為軸,直線AC為軸,直線DA1為軸建立空間直角坐標(biāo)系,解決以下問題:
(1)求異面直線AB與A1C所成角的余弦值;
(2)求直線AB與平面A1BC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,,分別為,的中點(diǎn),,如圖1.以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)的位置,如圖2.
如圖1 如圖2
(1)證明:平面平面;
(2)若平面平面,求直線與平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下是某地搜集到的新房屋的銷售價(jià)格和房屋的面積的數(shù)據(jù):
房屋面積() | 115 | 110 | 80 | 135 | 105 |
銷售價(jià)格(萬元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)畫出數(shù)據(jù)對應(yīng)的散點(diǎn)圖;
(2)求線性回歸方程,并在散點(diǎn)圖中加上回歸直線;
(3)據(jù)(2)的結(jié)果估計(jì)當(dāng)房屋面積為150時(shí)的銷售價(jià)格.附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 是海面上一條南北方向的海防警戒線,在 上點(diǎn) 處有一個(gè)水聲監(jiān)測點(diǎn),另兩個(gè)監(jiān)測點(diǎn) 分別在 的正東方向 處和 處.某時(shí)刻,監(jiān)測點(diǎn) 收到發(fā)自目標(biāo) 的一個(gè)聲波, 后監(jiān)測點(diǎn) 后監(jiān)測點(diǎn) 相繼收到這一信號(hào),在當(dāng)時(shí)的氣象條件下,聲波在水中的傳播速度是 .
(1)設(shè) 到 的距離為 ,用 分別表示 到 的距離,并求 的值;
(2)求目標(biāo) 的海防警戒線 的距離(精確到 ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com