【題目】如圖所示,底面為平行四邊形ABCD的四棱錐P-ABCD,EPC的中點.求證:PA∥平面BDE.(要求注明每一步推理的大前提、小前提和結(jié)論,并最終把推理過程用簡略的形式表示出來)

【答案】見解析

【解析】

(1)三角形的中位線與底邊平行(大前提),

連接ACBDO,連接OE,由已知OE△PAC的中位線(小前提),

所以PA∥OE(結(jié)論).

(2)平面外一條直線和平面內(nèi)一直線平行,則平面外的直線與該平面平行(大前提),

PA平面BDE,OE平面BDE(小前提),

所以PA∥平面BDE(結(jié)論).

上面的證明可簡略地寫成:

連接ACBDO.連接OE,

四邊形ABCD為平行四邊形,

∴OAC的中點.

∵EPC的中點,

△PAC,PA∥OE,OE平面BDE,PA平面BDE,

∴PA∥平面BDE.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求直線的極坐標方程及曲線的直角坐標方程;

(2)若是直線上一點,是曲線上一點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

1時,求的單調(diào)區(qū)間和最值;

2)①若對于任意的,不等式恒成立,求的取值范圍;②求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)學老師給出一個函數(shù),甲、乙、丙、丁四個同學各說出了這個函數(shù)的一條性質(zhì):甲:在 上函數(shù)單調(diào)遞減;乙:在上函數(shù)單調(diào)遞增;丙:在定義域R上函數(shù)的圖象關于直線對稱;丁:不是函數(shù)的最小值.老師說:你們四個同學中恰好有三個人說的正確.那么,你認為____說的是錯誤的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)若,求曲線處的切線方程;

(2)若對任意的,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學的名同學準備拼車去旅游,其中大一、大二、大三、大四每個年級各兩名,分乘甲、乙兩輛汽車.每車限坐名同學(乘同一輛車的名同學不考慮位置),其中大一的孿生姐妹需乘同一輛車,則乘坐甲車的名同學中恰有名同學是來自于同一年級的乘坐方式共有_______種(有數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的方程為.曲線的參數(shù)方程為為參數(shù)).

(1)求的直角坐標方程;

(2)若有三個不同的公共點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在含有個元素的集合中,若這個元素的一個排列(,,…,)滿足,則稱這個排列為集合的一個錯位排列(例如:對于集合,排列的一個錯位排列;排列不是的一個錯位排列).記集合的所有錯位排列的個數(shù)為.

(1)直接寫出,,的值;

(2)當時,試用,表示,并說明理由;

(3)試用數(shù)學歸納法證明:為奇數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

1)當時,求的單調(diào)區(qū)間;

2)若函數(shù)處取得極大值,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案