分析 (1)求出二次函數(shù)的對稱軸方程,討論對稱軸和區(qū)間[-1,1]的關(guān)系,運用函數(shù)的單調(diào)性即可得到最小值;
(2)設m<x1<x2<m+1,m為整數(shù).分類討論k的存在性,綜合討論結(jié)果,可得答案.
解答 解:(1)當b=$\frac{{a}^{2}}{4}$+1時,f(x)=(x+$\frac{a}{2}$)2+1,對稱軸為x=-$\frac{a}{2}$,
當a≤-2時,函數(shù)f(x)在[-1,1]上遞減,則g(a)=f(1)=$\frac{{a}^{2}}{4}$+a+2;
當-2<a≤2時,即有-1≤-$\frac{a}{2}$<1,則g(a)=f(-$\frac{a}{2}$)=1;
當a>2時,函數(shù)f(x)在[-1,1]上遞增,則g(a)=f(-1)=$\frac{{a}^{2}}{4}$-a+2.
綜上可得,g(a)=$\left\{\begin{array}{l}\frac{{a}^{2}}{4}+a+2,a≤2\\ 1,-2<a≤2\\ \frac{{a}^{2}}{4}-a+2,a>2\end{array}\right.$…(6分)
(2)設m<x1<x2<m+1,m為整數(shù).
則△=a2-4b>0,即b<$\frac{{a}^{2}}{4}$,
①當-$\frac{a}{2}$∈(m,m+$\frac{1}{2}$],即-1≤a+2m<0時,
f(m)=m2+am+b<m2+am+$\frac{{a}^{2}}{4}$=(m+$\frac{a}{2}$)2≤$\frac{1}{4}$;
②當-$\frac{a}{2}$∈(m+$\frac{1}{2}$,m+1),即-2<a+2m<-1時,
f(m+1)=(m+1)2+a(m+1)+b<(m+2)2+a(m+1)+$\frac{{a}^{2}}{4}$=(m+1+$\frac{a}{2}$)2≤$\frac{1}{4}$;
綜上,存在整數(shù)k,使得|f(k)|≤$\frac{1}{4}$.…(12分)
點評 本題考查的知識點是二次函數(shù)的圖象和性質(zhì),分類討論思想,熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2016 | B. | 2015 | C. | 2014 | D. | 2013 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 一條直線與兩個平行平面中的一個相交,則必與另一個相交 | |
B. | 平行于同一直線的兩個平面平行 | |
C. | 平行于同一平面的兩個平面平行 | |
D. | 一個平面與兩個平行平面相交,交線平行 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com