橢圓的中心在原點(diǎn), 一個焦點(diǎn)是(0,5), 且被直線3x-y+2=0截得的弦的中點(diǎn)的縱坐標(biāo)是, 則橢圓方程是+=1.
( )
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年崇文區(qū)期末理)(14分)
已知橢圓的中心在坐標(biāo)原點(diǎn),左頂點(diǎn),離心率,為右焦點(diǎn),過焦點(diǎn)的直線交橢圓于、兩點(diǎn)(不同于點(diǎn)).
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)時,求直線PQ的方程;
(Ⅲ)判斷能否成為等邊三角形,并說明理由.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的中心在坐標(biāo)原點(diǎn),左頂點(diǎn),離心率,為右焦點(diǎn),過焦點(diǎn)的直線交橢圓于、兩點(diǎn)(不同于點(diǎn)).
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)時,求直線PQ的方程;
(Ⅲ)判斷能否成為等邊三角形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)已知橢圓的中心在坐標(biāo)原點(diǎn),左頂點(diǎn),離心率,為右焦點(diǎn),過焦點(diǎn)的直線交橢圓于、兩點(diǎn)(不同于點(diǎn)).(1)求橢圓的方程;(2)當(dāng)時,求直線PQ的方程;(3)判斷能否成為等邊三角形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西穩(wěn)派名校學(xué)術(shù)聯(lián)盟高三12月調(diào)研理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率。它有一個頂點(diǎn)恰好是拋物線=4y的焦點(diǎn)。過該橢圓上任一點(diǎn)P作PQ⊥x軸,垂足為Q,點(diǎn)C在QP的延長線上,且。
(Ⅰ)求動點(diǎn)C的軌跡E的方程;
(Ⅱ)設(shè)橢圓的左右頂點(diǎn)分別為A,B,直線AC(C點(diǎn)不同于A,B)與直線交于點(diǎn)R,D為線段RB的中點(diǎn)。試判斷直線CD與曲線E的位置關(guān)系,并證明你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com