7.要得到函數(shù)y=cos(2x-$\frac{π}{6}$)的圖象,只需將函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{π}{12}$個單位B.向左平移$\frac{π}{6}$個單位
C.向右平移$\frac{π}{12}$個單位D.向右平移$\frac{π}{6}$個單位

分析 先根據(jù)誘導(dǎo)公式將函數(shù)化簡,再根據(jù)左加右減的原則進(jìn)行平移從而可得到答案.

解答 解:∵y=cos(2x-$\frac{π}{6}$)=cos($\frac{π}{6}$-2x)=sin(2x+$\frac{π}{3}$)=sin[2(x+$\frac{π}{6}$)],
∴將函數(shù)y=sin2x的圖象向左平移$\frac{π}{6}$個單位即可得到函數(shù)y=cos(2x-$\frac{π}{6}$)的圖象.
故選:B.

點評 本題主要考查誘導(dǎo)公式的應(yīng)用和三角函數(shù)的平移,三角函數(shù)平移時一定要遵循左加右減上加下減的原則.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.袋子中裝有形狀和大小完全相同的五個小球,每個小球上分別標(biāo)有“1”“2”“3”“4”“6”這五個數(shù),現(xiàn)從中隨機(jī)選取三個小球,則所選的三個小球上的數(shù)恰好能構(gòu)成一個等差數(shù)列的概率是(  )
A.$\frac{3}{10}$B.$\frac{1}{5}$C.$\frac{1}{10}$D.$\frac{1}{20}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知邊長為2的正方形ABCD與菱形ABEF所在平面互相垂直,M為BC中點.
(Ⅰ)求證:EM∥平面ADF.
(Ⅱ)若∠ABE=60°,求四面體M-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=1-$\frac{a}{{a}^{x}+b}$為定義在R上的奇函數(shù).
(1)求f(x)的解析式;
(2)判斷f(x)的單調(diào)性,并用定義證明;
(3)若f(lnm)+f(2lnn)≤1-3lnm,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x|x-2|
(Ⅰ)寫出不等式f(x)>0的解集;
(Ⅱ)解不等式f(x)<x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.一輛汽車在某段路程中的行駛速率與時間的關(guān)系如圖所示.
(1)求圖中陰影部分的面積,并說明所求面積的實際含義;
(2)假設(shè)這輛汽車在行駛該段路程前里程表的讀數(shù)是8018km,試求汽車在行駛這段路程時里程表讀數(shù)s(km)與時間t (h)的函數(shù)解析式,并作出相應(yīng)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}為等差數(shù)列,若a2+a6+a10=$\frac{π}{2}$,則tan(a3+a9)的值為( 。
A.0B.$\frac{\sqrt{3}}{3}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.點B是點A(1,2,3)在坐標(biāo)平面yOz內(nèi)的射影,則|OB|等于( 。
A.$\sqrt{14}$B.$\sqrt{13}$C.2$\sqrt{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=x3+ax2+bx+c,g(x)=3x2+2ax+b(a,b,c是常數(shù)),若f(x)在(0,1)上單調(diào)遞減,則下列結(jié)論中:①f(0)•f(1)≤0;②g(0)•g(1)≥0;③a2-3b有最小值.
正確結(jié)論的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案