已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實(shí)數(shù)m、n使得h (x)=m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的函數(shù).設(shè)f (x)=x2+x、g(x)=x+2,若h (x)為f (x)、g(x)在R上生成的一個(gè)偶函數(shù),且h(1)=3,則函數(shù)h (x)=______.
依題意h(x)=m f(x)+ng(x)=m(x2+x)+n(x+2)=mx2+mx+nx+2n
又h (x)為偶函數(shù)
則有h(x)=h(-x),即mx2+mx+nx+2n=mx2-mx-nx+2n
得出m+n=0
又h(1)=m+m+n+2n=3,即2m+3n=3
則有
m+n=0
2m+3n=3
,解得m=-3,n=3
所以h(x)=mx2+mx+nx+2n=-3x2-3x+3x+6=-3x2+6
故答案為:-3x2+6
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x),g(x)是定義在R上的函數(shù),f(x)=axg(x)(a>0且a≠1),2
f(1)
g(1)
-
f(-1)
g(-1)
=-1
,在有窮數(shù)列{
f(n)
g(n)
}
(n=1,2…,10)中,任意取正整數(shù)k(1≤k≤10),則前k項(xiàng)和大于
15
16
的概率是( 。
A、
4
5
B、
3
5
C、
2
5
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x),g(x)都是定義在R上的函數(shù),且
f(x)
g(x)
=ax
(a>0,且a≠1),f'(x)g(x)<f(x)g'(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,則a的值為(  )
A、2
B、
1
2
C、
3
5
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x),g(x)對(duì)應(yīng)值如表.
x 0 1 -1
f(x) 1 0 -1
x 0 1 -1
g(x) -1 0 1
則f[g(1)]的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)、g(x)都是定義在R上的函數(shù),g(x)≠0,
f(x)
g(x)
=
a
x
 
,且f′(x)g(x)>f(x)g′(x),(a>0,且a≠1),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
.若數(shù)列{
f(n)
g(n)
}
的前n項(xiàng)和大于62,則n的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①已知f(x)+2f(
1
x
)=3x
,則函數(shù)g(x)=f(2x)在(0,1)上有唯一零點(diǎn);
②對(duì)于函數(shù)f(x)=x
1
2
的定義域中任意的x1、x2(x1≠x2)必有f(
x1+x2
2
)<
f(x1)+f(x2)
2

③已知f(x)=|2-x+1-1|,a<b,f(a)<f(b),則必有0<f(b)<1;
④已知f(x)、g(x)是定義在R上的兩個(gè)函數(shù),對(duì)任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時(shí)f(x)•g(x)≠0.則函數(shù)f(x)、g(x)都是奇函數(shù).
其中正確命題的序號(hào)是
①③
①③

查看答案和解析>>

同步練習(xí)冊(cè)答案