下列函數(shù)中,在其定義域是減函數(shù)的是( 。
A、f(x)=-x2+2x+1
B、f(x)=
1
x
C、f(x)=(
1
4
)|x|
D、f(x)=ln(2-x)
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)的單調(diào)性,反比例函數(shù)的單調(diào)性,指數(shù)函數(shù)的單調(diào)性,含絕對(duì)值函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù)的單調(diào)性及單調(diào)性的定義即可找出正確的選項(xiàng).
解答: 解:A.該函數(shù)為二次函數(shù),在其定義域上沒(méi)有單調(diào)性;
B.該函數(shù)為反比例函數(shù),在其定義域上沒(méi)有單調(diào)性;
C.f(x)=(
1
4
)|x|=
(
1
4
)x
x≥0
4xx<0
,∴x<0時(shí)f(x)是增函數(shù),即在其定義域上不是減函數(shù);
D.f(x)在定義域(-∞,2)上,x增大時(shí),f(x)減小,所以該函數(shù)在其定義域上是減函數(shù).
故選D.
點(diǎn)評(píng):考查二次函數(shù)、反比例函數(shù)、含絕對(duì)值函數(shù)在其定義域上的單調(diào)性,對(duì)數(shù)函數(shù)的單調(diào)性及單調(diào)性的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在等差數(shù)列{an}中,a4=10,a10=-2,若前n項(xiàng)和Sn=60,求n的值;
(2)在等比數(shù)列{an}中,a1=81,a4=24,求它的前5項(xiàng)和S5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(1,2),
b
=(-1,m),若
a
b
的夾角為鈍角,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的流程圖中,輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線的焦點(diǎn)F作互相垂直的兩條直線,分別交準(zhǔn)線于P、Q兩點(diǎn),又過(guò)P、Q分別作拋物線對(duì)稱軸OF的平行線,交拋物線于M、N兩點(diǎn),則M、N、F三點(diǎn)( 。
A、共圓B、共線
C、在另一拋物線上D、在一雙曲線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax5+bx3+cx-9,f(-3)=-6,則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某城市缺水問(wèn)題比較突出,為了制定節(jié)水管理辦法,對(duì)全市居民某年的月均用水量進(jìn)行了抽樣調(diào)查,其中n位居民的月均用水量分別為x1,x2,…,xn(單位:噸),根據(jù)如圖所示的程序框圖,若n=2,且x1,x2分別為1,2,則輸出的s結(jié)果為( 。
A、
1
4
B、
1
3
C、
3
4
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
=(a1,a2),
b
=(b1,b2),定義一種運(yùn)算“⊕”.向
a
b
=(a1,a2)⊕(b1,b2)=(a2b1,a1b2).已知
m
=(2,
1
2
),
n
=(
π
3
,0),點(diǎn)P(x,y)在y=sinx的圖象上運(yùn)動(dòng),點(diǎn)Q在y=f(x)的圖象上運(yùn)動(dòng)且滿足
OQ
=
m
OP
+
n
(其中O為坐標(biāo)原點(diǎn)),則y=f(x)的最小值為( 。
A、-1
B、-2
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={0,1,2,3,4},B={2,4,8},那么A∩B子集的個(gè)數(shù)是(  )
A、4B、5C、7D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案