【題目】如圖,AB是半圓O的直徑,C是半圓O上除A,B外的一個(gè)動(dòng)點(diǎn),DC垂直于半圓O所在的平面,DCEB,DCEB1,AB4.

1)證明:平面ADE⊥平面ACD

2)當(dāng)C點(diǎn)為半圓的中點(diǎn)時(shí),求二面角DAEB的余弦值.

【答案】1)證明見(jiàn)解析(2

【解析】

1)由BCACBCCDBC⊥平面ACD,證明四邊形DCBE是平行四邊形得DEBC,故而DE平面ACD,從而得證面面垂直;

2)建立空間坐標(biāo)系,求出兩半平面的法向量,計(jì)算法向量的夾角得出二面角的大小.

1)證明:∵AB是圓O的直徑,∴ACBC

DC⊥平面ABC,BC平面ABC

DCBC,又DCACC,

BC⊥平面ACD,

DCEB,DCEB,

∴四邊形DCBE是平行四邊形,∴DEBC,

DE⊥平面ACD

DE平面ADE,

∴平面ACD⊥平面ADE.

2)當(dāng)C點(diǎn)為半圓的中點(diǎn)時(shí),ACBC2,

C為原點(diǎn),以CACB,CD為坐標(biāo)軸建立空間坐標(biāo)系如圖所示:

D00,1),E0,2,1),A20,0),B0,20),

(﹣22,0),0,01),0,2,0),20,﹣1),

設(shè)平面DAE的法向量為x1,y1,z1),平面ABE的法向量為x2,y2z2),

,即,

x111,02),令x211,10.

cos.

∵二面角DAEB是鈍二面角,

∴二面角DAEB的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,令

1)求的極值

2)若單調(diào)遞增,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)(其中.

1)判斷函數(shù)的奇偶性,并說(shuō)明理由;

2)求函數(shù)的反函數(shù)

3)若兩個(gè)函數(shù)在區(qū)間上恒滿(mǎn)足,則函數(shù)在閉區(qū)間上是分離的.試判斷的反函數(shù)在閉區(qū)間上是否分離?若分離,求出實(shí)數(shù)的取值范圍;若不分離,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)到準(zhǔn)線(xiàn)的距離為,直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),過(guò)這兩點(diǎn)分別作拋物線(xiàn)的切線(xiàn),且這兩條切線(xiàn)相交于點(diǎn).

(1)若的坐標(biāo)為,求的值;

(2)設(shè)線(xiàn)段的中點(diǎn)為,點(diǎn)的坐標(biāo)為,過(guò)的直線(xiàn)與線(xiàn)段為直徑的圓相切,切點(diǎn)為,且直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)正方體的頂點(diǎn)作平面,使每條棱在平面的正投影的長(zhǎng)度都相等,則這樣的平面可以作(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年1月至2月由新型冠狀病毒引起的肺炎病例陡然增多,為了嚴(yán)控疫情傳播,做好重點(diǎn)人群的預(yù)防工作,某地區(qū)共統(tǒng)計(jì)返鄉(xiāng)人員人,其中歲及以上的共有.人中確診的有名,其中歲以下的人占.

確診患新冠肺炎

未確診患新冠肺炎

合計(jì)

50歲及以上

40

50歲以下

合計(jì)

10

100

1)試估計(jì)歲及以上的返鄉(xiāng)人員感染新型冠狀病毒引起的肺炎的概率;

2)請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有%的把握認(rèn)為是否確診患新冠肺炎與年齡有關(guān);

參考表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是某電器銷(xiāo)售公司2018年度各類(lèi)電器營(yíng)業(yè)收入占比和凈利潤(rùn)占比統(tǒng)計(jì)表:

空調(diào)類(lèi)

冰箱類(lèi)

小家電類(lèi)

其它類(lèi)

營(yíng)業(yè)收入占比

90.10%

4.98%

3.82%

1.10%

凈利潤(rùn)占比

95.80%

3.82%

0.86%

則下列判斷中不正確的是(

A.該公司2018年度冰箱類(lèi)電器銷(xiāo)售虧損

B.該公司2018年度小家電類(lèi)電器營(yíng)業(yè)收入和凈利潤(rùn)相同

C.該公司2018年度凈利潤(rùn)主要由空調(diào)類(lèi)電器銷(xiāo)售提供

D.剔除冰箱類(lèi)銷(xiāo)售數(shù)據(jù)后,該公司2018年度空調(diào)類(lèi)電器銷(xiāo)售凈利潤(rùn)占比將會(huì)降低

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如表是我國(guó)某城市在2017年1月份至10月份個(gè)月最低溫與最高溫()的數(shù)據(jù)一覽表.

月份

1

2

3

4

5

6

7

8

9

10

最高溫

5

9

9

11

17

24

27

30

31

21

最低溫

已知該城市的各月最低溫與最高溫具有相關(guān)關(guān)系,根據(jù)這一覽表,則下列結(jié)論錯(cuò)誤的是( )

A.最低溫與最高位為正相關(guān)

B.每月最高溫和最低溫的平均值在前8個(gè)月逐月增加

C.月溫差(最高溫減最低溫)的最大值出現(xiàn)在1月

D.1月至4月的月溫差(最高溫減最低溫)相對(duì)于7月至10月,波動(dòng)性更大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=-x2+ef′(x

(Ⅰ)求fx)的單調(diào)區(qū)間;

(Ⅱ)若存在x1x2x1x2),使得fx1+fx2=1,求證:x1+x22

查看答案和解析>>

同步練習(xí)冊(cè)答案