若動(dòng)點(diǎn)()在曲線上變化,則的最大值為(   )
A.B.C.D.2
A 
設(shè)x=2cosα,y=bsinα,則x2+2y=4cos2α+2bsinα=-4sin2α+2bsinα+4
=-2(sin2α-bsinα-2)=-2(sinα-)2+4+,
的最大值為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A(-2,0),B(2,0),動(dòng)點(diǎn)P與A、B兩點(diǎn)連線的斜率分別為,且滿足·="t" (t≠0且t≠-1). 當(dāng)t<0時(shí),曲線C的兩焦點(diǎn)為F1,F(xiàn)2,若曲線C上存在點(diǎn)Q使得∠F1QF2=120O,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線中心在原點(diǎn),一個(gè)頂點(diǎn)的坐標(biāo)為,且焦距與虛軸長之比為,則雙曲線的標(biāo)準(zhǔn)方程是____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知的三邊長成等差數(shù)列,若點(diǎn)的坐標(biāo)分別為.(1)求頂點(diǎn)的軌跡的方程;(2)若線段的延長線交軌跡于點(diǎn),當(dāng)時(shí)求線段的垂直平分線軸交點(diǎn)的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,點(diǎn)滿足,記點(diǎn)的軌跡為.
(Ⅰ)求軌跡的方程;(Ⅱ)若直線過點(diǎn)且與軌跡交于、兩點(diǎn). (i)設(shè)點(diǎn),問:是否存在實(shí)數(shù),使得直線繞點(diǎn)無論怎樣轉(zhuǎn)動(dòng),都有成立?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.(ii)過、作直線的垂線,垂足分別為、,記
,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓上任意一點(diǎn)到兩焦點(diǎn)距離之和為4,直線為該橢圓的一條準(zhǔn)線.
1)求橢圓C的方程;
2)設(shè)直線與橢圓C交于不同的兩點(diǎn)(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知B(-1,1)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上一點(diǎn),且點(diǎn)B到橢圓的兩個(gè)焦點(diǎn)距離之和為4;
(1)求橢圓方程;
(2)設(shè)A為橢圓的左頂點(diǎn),直線AB交y軸于點(diǎn)C,過C作斜率為k的直線l交橢圓于D,E兩點(diǎn),若
S△CBD
S△CAE
=
1
6
,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為( )
A.B.2 C.D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

同步練習(xí)冊(cè)答案