定義在實(shí)數(shù)R上的函數(shù)y= f(x)是偶函數(shù),當(dāng)x≥0時(shí),.

(Ⅰ)求f(x)在R上的表達(dá)式;

(Ⅱ)求y=f(x)的最大值,并寫出f(x)在R上的單調(diào)區(qū)間(不必證明)

 

 

 

 

【答案】

 解:(Ⅰ)設(shè)x<0,則- x>0,  

 ∵f(x)是偶函數(shù),∴f(-x)=f(x) ∴x<0時(shí),

   所以  

(Ⅱ)y=f(x)開口向下,所以y=f(x)有最大值f(1)=f(-1)=1

     函數(shù)y=f(x)的單調(diào)遞增區(qū)間是(-∞,-1和[0,1]

                   單調(diào)遞減區(qū)間是 [-1,0]和[1,+∞ 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在實(shí)數(shù)R上的函數(shù)y=f(x)是偶函數(shù),當(dāng)x≥0時(shí),f(x)=-4x2+8x-3.
(Ⅰ)求f(x)在R上的表達(dá)式;
(Ⅱ)求y=f(x)的最大值,并寫出f(x)在R上的單調(diào)區(qū)間(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是冪函數(shù),圖象過(2,8),定義在實(shí)數(shù)R上的函數(shù)y=F(x)是奇函數(shù),當(dāng)x>0時(shí),F(xiàn)(x)=f(x)+1,求F(x)在R上的表達(dá)式;并畫出圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)R上的函數(shù)y=f(x)不恒為零,同時(shí)滿足f(x+y)=f(x)f(y),且當(dāng)x>0時(shí),f(x)>1,那么當(dāng)x<0時(shí),一定有( 。
A、f(x)<-1B、-1<f(x)<0C、f(x)>1D、0<f(x)<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在實(shí)數(shù)R上的函數(shù),g(x)是定義在正整數(shù)N*上的函數(shù),同時(shí)滿足下列條件:
(1)任意x,y∈R,有f(x+y)=f(x)f(y),當(dāng)x<0時(shí),f(x)>1且f(-1)=
5
;
(2)g(1)=f(0),g(2)=f(-2);
(3)f[g(n+2)]=
f[(n+3)g(n+1)]
f[(n+2)g(n)]
,n∈N*
試求:
(1)證明:任意x,y∈R,x≠y,都有
f(x)-f(y)
x-y
<0

(2)是否存在正整數(shù)n,使得g(n)是25的倍數(shù),若存在,求出所有自然數(shù)n;若不存在說明理由.(階乘定義:n!=1×2×3×…×n)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是冪函數(shù),圖象過點(diǎn)(2,8),定義在實(shí)數(shù)R上的函數(shù)y=F(x)是奇函數(shù),當(dāng)x>0時(shí),F(xiàn)(x)=f(x)+1,求F(x)在R上的表達(dá)式;并畫出圖象.

查看答案和解析>>

同步練習(xí)冊(cè)答案