【題目】某企業(yè)有兩個分廠生產(chǎn)某種零件,按規(guī)定內(nèi)徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質(zhì)品.從兩個分廠生產(chǎn)的零件中各抽出了500件,量其內(nèi)徑尺寸,得結(jié)果如下表:
甲廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數(shù) | 12 | 63 | 86 | 182 | 92 | 61 | 4 |
乙廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數(shù) | 29 | 71 | 85 | 159 | 76 | 62 | 18 |
(1)試分別估計兩個分廠生產(chǎn)的零件的優(yōu)質(zhì)品率;
(2)由以上統(tǒng)計數(shù)據(jù)填下面列聯(lián)表,并問是否有的把握認(rèn)為“兩個分廠生產(chǎn)的零件的質(zhì)量有差異”.
甲 廠 | 乙 廠 | 合計 | |
優(yōu)質(zhì)品 | |||
非優(yōu)質(zhì)品 | |||
合計 |
附:
【答案】(1) 72% 64% (2) 有99%的把握認(rèn)為“兩個分廠生產(chǎn)的零件的質(zhì)量有差異”
【解析】解:(1)甲廠抽查的產(chǎn)品中有360件優(yōu)質(zhì)品,從而甲廠生產(chǎn)的零件的優(yōu)質(zhì)品率估計為=72%;
乙廠抽查的產(chǎn)品中有320件優(yōu)質(zhì)品,從而乙廠生產(chǎn)的零件的優(yōu)質(zhì)品率估計為=64%.
(2)
甲廠 | 乙廠 | 合計 | |
優(yōu)質(zhì)品 | 360 | 320 | 680 |
非優(yōu)質(zhì)品 | 140 | 180 | 320 |
合計 | 500 | 500 | 1 000 |
χ2=≈7.35>6.635,
所以有99%的把握認(rèn)為“兩個分廠生產(chǎn)的零件的質(zhì)量有差異”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)= (a∈R)是奇函數(shù),函數(shù)g(x)= 的定義域為(﹣2,+∞).
(1)求a的值;
(2)若g(x)= 在(﹣2,+∞)上單調(diào)遞減,根據(jù)單調(diào)性的定義求實數(shù)m的取值范圍;
(3)在(2)的條件下,若函數(shù)h(x)=f(x)+g(x)在區(qū)間(﹣1,1)上有且僅有兩個不同的零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點到定點的距離比到定直線的距離小1.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)過點任意作互相垂直的兩條直線,分別交曲線于點和.設(shè)線段, 的中點分別為,求證:直線恒過一個定點;
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列四個命題:
p1:若直線l和平面α內(nèi)的無數(shù)條直線垂直,則l⊥α;
p2:若f(x)=2x﹣2﹣x , 則x∈R,f(﹣x)=﹣f(x);
p3:若 ,則x0∈(0,+∞),f(x0)=1;
p4:在△ABC中,若A>B,則sinA>sinB.
其中真命題的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的增函數(shù)y=f(x)對任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求證:f(x)為奇函數(shù);
(3)若f(k3x)+f(3x﹣9x﹣4)<0對任意x∈R恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()經(jīng)過點,且兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形.
(1)求橢圓的方程;
(2)動直線: (, )交橢圓于、兩點,試問:在坐標(biāo)平面上是否存在一個定點,使得以為直徑的圓恒過點.若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,且過點.
(1)求橢圓的方程;
(2)若不經(jīng)過點的直線與交于兩點,且直線與直線的斜率之和為,證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x﹣sinxcosx﹣sin2x.
(Ⅰ)求函數(shù)f(x)取得最大值時x的集合;
(Ⅱ) 設(shè)A、B、C為銳角三角形ABC的三個內(nèi)角,若cosB=,f(C)=﹣,求sinA的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com