已知圓的圓心在坐標(biāo)原點(diǎn)O,且恰好與直線相切.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)A為圓上一動(dòng)點(diǎn),AN軸于N,若動(dòng)點(diǎn)Q滿足(其中m為非零常數(shù)),試求動(dòng)點(diǎn)的軌跡方程.
(3)在(2)的結(jié)論下,當(dāng)時(shí),得到動(dòng)點(diǎn)Q的軌跡曲線C,與垂直的直線與曲線C交于 B、D兩點(diǎn),求面積的最大值.

(1);(2);(3).

解析試題分析:(1)求圓的方程,已經(jīng)已知圓心坐標(biāo),只要再求得圓的半徑即可,而圓心的半徑等于圓心到切線的距離;(2)本題動(dòng)點(diǎn)可以看作是由動(dòng)點(diǎn)的運(yùn)動(dòng)成生成的,因此可以用動(dòng)點(diǎn)轉(zhuǎn)移法求點(diǎn)的軌跡方程,具體方法就是設(shè),,利用條件,求出的關(guān)系,并且用來表示,然后把代入(1)中圓的方程,就能求得動(dòng)點(diǎn)為的軌跡方程;(3)時(shí),曲線的方程為,直線垂直,其方程可設(shè)為,這條直線與曲線相交,由此可求得的取值范圍,而的面積應(yīng)該表示為的函數(shù),然后利用函數(shù)的知識(shí)或不等式的知識(shí)求得最值.
試題解析:(1)設(shè)圓的半徑為,圓心到直線距離為,則
所以,圓的方程為
(2)設(shè)動(dòng)點(diǎn),,軸于,
由題意,,所以 即:
代入,得動(dòng)點(diǎn)的軌跡方程.
(3)時(shí),曲線方程為,設(shè)直線的方程為
設(shè)直線與橢圓交點(diǎn)
聯(lián)立方程
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/07/9/cowjb2.png" style="vertical-align:middle;" />,解得,且
又因?yàn)辄c(diǎn)到直線的距離 
 .(當(dāng)且僅當(dāng)
時(shí)取到最大值)面積的最大值為.
考點(diǎn):(1)圓的方程;(2)動(dòng)點(diǎn)轉(zhuǎn)移法求軌跡方程;(3)直線與橢圓相交,面積的最值問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:=1(a>b>0)經(jīng)過點(diǎn)M(-2,-1),離心率為.過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.
(1)求橢圓C的方程;
(2)試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C1的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為F1(-2,0),F2(2,0),點(diǎn)A(2,3)在橢圓C1上,過點(diǎn)A的直線L與拋物線C2:x2=4y交于B,C兩點(diǎn),拋物線C2在點(diǎn)B,C處的切線分別為l1,l2,且l1與l2交于點(diǎn)P.
(1)求橢圓C1的方程;
(2)是否存在滿足|PF1|+|PF2|=|AF1|+|AF2|的點(diǎn)P?若存在,指出這樣的點(diǎn)P有幾個(gè)(不必求出點(diǎn)P的坐標(biāo));若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓+=1(a>b>0)的左焦點(diǎn)為F,離心率為,過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若·+·=8,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以橢圓的一個(gè)頂點(diǎn)為直角頂點(diǎn)作此橢圓的內(nèi)接等腰直角三角形,試問:(1)這樣的等腰直角三角形是否存在?若存在,寫出一個(gè)等腰直角三角形兩腰所在的直線方程。若不存在,說明理由。(2)這樣的等腰直角三角形若存在,最多有幾個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓過點(diǎn)P(1, ),其左、右焦點(diǎn)分別為F1,F2,離心率e=,M,N是直線x=4上的兩個(gè)動(dòng)點(diǎn),且·=0.

(1)求橢圓的方程;
(2)求|MN|的最小值;
(3)以MN為直徑的圓C是否過定點(diǎn)?請證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓>0)的離心率,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于不同的兩點(diǎn),已知點(diǎn)的坐標(biāo)為( ,0),點(diǎn)(0,)在線段的垂直平分線上,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓C=1(ab>0)的左、右焦點(diǎn)分別是F1、F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上除長軸端點(diǎn)外的任一點(diǎn),過點(diǎn)P作斜率為k的直線l,使得l與橢圓C有且只有一個(gè)公共點(diǎn).設(shè)直線PF1,PF2的斜率分別為k1,k2.若k≠0,試證明為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F(c,0).
(1)若雙曲線的一條漸近線方程為yxc=2,求雙曲線的方程;
(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過A作圓的切線,斜率為-,求雙曲線的離心率.

查看答案和解析>>

同步練習(xí)冊答案