(2012•豐臺區(qū)二模)在平面直角坐標(biāo)系xOy中,拋物線C的焦點在y軸上,且拋物線上的點P(x0,4)到焦點F的距離為5.斜率為2的直線l與拋物線C交于A,B兩點.
(Ⅰ)求拋物線C的標(biāo)準(zhǔn)方程,及拋物線在P點處的切線方程;
(Ⅱ)若AB的垂直平分線分別交y軸和拋物線于M,N兩點(M,N位于直線l兩側(cè)),當(dāng)四邊形AMBN為菱形時,求直線l的方程.
分析:(Ⅰ)設(shè)拋物線的方程,根據(jù)點P到焦點F的距離為5,可得拋物線的標(biāo)準(zhǔn)方程,利用導(dǎo)數(shù),即可求得拋物線在P點處的切線方程;
(Ⅱ)設(shè)直線l的方程與拋物線方程聯(lián)立,利用韋達(dá)定理,求得AB的中點,從而可得AB的垂直平分線方程,進(jìn)一步確定M、N的坐標(biāo),即可求得直線l的方程.
解答:解:(Ⅰ)依題意設(shè)拋物線C:x2=2py(p>0),
因為點P到焦點F的距離為5,所以點P到準(zhǔn)線y=-
p
2
的距離為5.
因為P(x0,4),所以由拋物線準(zhǔn)線方程可得
p
2
=1
,∴p=2.
所以拋物線的標(biāo)準(zhǔn)方程為x2=4y.                   …(4分)
y=
1
4
x2
,所以 y′=
1
2
x
,點P(±4,4),
所以y′|x=-4=
1
2
×(-4)=-2
y′|x=4=
1
2
×4=2

所以點P(-4,4)處拋物線切線方程為y-4=-2(x+4),即2x+y+4=0;點P(4,4)處拋物線切線方程為y-4=2(x-4),即2x-y-4=0.
所以P點處拋物線切線方程為2x+y+4=0,或2x-y-4=0.   …(7分)
(Ⅱ)設(shè)直線l的方程為y=2x+m,A(x1,y1),B(x2,y2),
聯(lián)立
x2=4y
y=2x+m
,消y得x2-8x-4m=0,△=64+16m>0.
所以x1+x2=8,x1x2=-4m,
所以
x1+x2
2
=4
y1+y2
2
=8+m
,
即AB的中點為Q(4,8+m).
所以AB的垂直平分線方程為y-(8+m)=-
1
2
(x-4)

因為四邊形AMBN為菱形,所以M(0,m+10),
因為M,N關(guān)于Q(4,8+m)對稱,所以N點坐標(biāo)為N(8,m+6),
因為N在拋物線上,所以64=4×(m+6),即m=10,
所以直線l的方程為y=2x+10.       …(14分)
點評:本題考查拋物線的標(biāo)準(zhǔn)方程,考查拋物線的切線方程,考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理的而運用,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)二模)執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為63,則判斷框中應(yīng)填( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)二模)如圖所示,四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,Q是棱PA上的動點.
(Ⅰ)若Q是PA的中點,求證:PC∥平面BDQ;
(Ⅱ)若PB=PD,求證:BD⊥CQ;
(Ⅲ)在(Ⅱ)的條件下,若PA=PC,PB=3,∠ABC=60°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)二模)從5名學(xué)生中任選4名分別參加數(shù)學(xué)、物理、化學(xué)、生物四科競賽,且每科競賽只有1人參加,若甲不參加生物競賽,則不同的選擇方案共有
96
96
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)二模)在平面直角坐標(biāo)系中,若點A,B同時滿足:①點A,B都在函數(shù)y=f(x)圖象上;②點A,B關(guān)于原點對稱,則稱點對(A,B)是函數(shù)y=f(x)的一個“姐妹點對”(規(guī)定點對(A,B)與點對(B,A)是同一個“姐妹點對”).那么函數(shù)f(x)=
x-4,x≥0
x2-2x,x<0
的“姐妹點對”的個數(shù)為
1
1
;當(dāng)函數(shù)g(x)=ax-x-a有“姐妹點對”時,a的取值范圍是
a>1
a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)二模)某地區(qū)恩格爾系數(shù)y(%)與年份x的統(tǒng)計數(shù)據(jù)如下表:
年份x 2004 2005 2006 2007
恩格爾系數(shù)y(%) 47 45.5 43.5 41
從散點圖可以看出y與x線性相關(guān),且可得回歸方程為
?
y
=
?
b
x+4055.25
,據(jù)此模型可預(yù)測2012年該地區(qū)的恩格爾系數(shù)(%)為
31.25
31.25

查看答案和解析>>

同步練習(xí)冊答案