函數(shù)f(x)=ax2+bx(a>0,b>0)在點(1,f(1))處的切線斜率為2,則的最小值是( )
A.10
B.9
C.8
D.
【答案】分析:求出原函數(shù)的導(dǎo)函數(shù),由f′(1)=2a+b=2,得,把變形為后整體乘以1,展開后利用基本不等式求最小值.
解答:解:由f(x)=ax2+bx,得f′(x)=2ax+b,
又f(x)=ax2+bx(a>0,b>0)在點(1,f(1))處的切線斜率為2,
所以f′(1)=2a+b=2,即
=
當(dāng)且僅當(dāng),即時“=”成立.
所以的最小值是9.
故選B.
點評:本題考查了導(dǎo)數(shù)的運算,考查了利用基本不等式求最值,考查了學(xué)生靈活變換和處理問題的能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx(a,b是常數(shù),且a≠0),f(2)=0,且方程f(x)=x有兩個相等的實數(shù)根.
(1)求f(x)的解析式;
(2)當(dāng)x∈[0,3]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),曲線y=f(x)通過點(0,2a+3),且在x=1處的切線垂直于y軸.
(Ⅰ)用a分別表示b和c;
(Ⅱ)當(dāng)bc取得最大值時,寫出y=f(x)的解析式;
(Ⅲ)在(Ⅱ)的條件下,g(x)滿足
43
f(x)-6
=(x-2)g(x)(x>2),求g(x)的最大值及相應(yīng)x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+ln(x+1).
(Ⅰ)當(dāng)a=
1
4
時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[0,+∞)時,不等式f(x)≤x恒成立,求實數(shù)a的取值范圍;
(Ⅲ)求證:(1+
2
2×3
)×(1+
4
3×5
)×(1+
8
5×9
)…(1+
2n
(2n-1+1)(2n+1)
)<e
(其中,n∈N*,e是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a,b,c(a≠0)滿足
a
m+2
+
b
m+1
+
c
m
=0(m>0)
,對于函數(shù)f(x)=ax2+bx+c,af(
m
m+1
)
與0的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),x∈R,F(x)=
f(x)(x>0)
-f(x)(x<0)

(1)若f(-1)=0,且函數(shù)f(x)的值域為[0,+∞),求F(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設(shè)m•n<0,m+n>0,a>0且f(x)為偶函數(shù),判斷F(m)+F(n)能否大于零.

查看答案和解析>>

同步練習(xí)冊答案