將一顆質(zhì)地均勻的正方體骰子(六個面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b.設(shè)復(fù)數(shù)z=a+bi.
(1)求事件“z-3i為實(shí)數(shù)”的概率;
(2)求事件“|z-2|≤3”的概率.
分析:依題意b可取的值1,2,3,4,5,6
(1))Z-3i為實(shí)數(shù)則虛部為0可求符合條件的 b的個數(shù),代入概率的計算公式可求
(2)根據(jù)題意可先求(a,b)的所有結(jié)果數(shù),再由|Z-2|≤3?
(a-2)2+b2
≤3
,求出符合條件的a,b
解答:解:(1)Z-3i為實(shí)數(shù),即a+bi-3i=a+(b-3)i為實(shí)數(shù),∴b=3(3分)
又依題意,b可取1,2,3,4,5,6
故出現(xiàn)b=3的概率為
1
6

即事件“Z-3i為實(shí)數(shù)”的概率為
1
6
(6分)
(2)由已知,|Z-2|=|a-2+bi|=
(a-2)2+b2
≤3
(8分)
可知,b的值只能取1、2、3(9分)
當(dāng)b=1時,(a-2)2≤8,即a可取1,2,3,4
當(dāng)b=2時,(a-2)2≤5,即a可取1,2,3,4
當(dāng)b=3時,(a-2)2≤0,即a可取2
由上可知,共有9種情況下可使事件“|Z-2|≤3”成立(11分)
又a,b的取值情況共有36種
故事件“|Z-2|≤3”的概率為
1
4
(12分)
點(diǎn)評:本題主要考查了古典概率的計算公式P=
m
n
的應(yīng)用,解決問題的關(guān)鍵是要準(zhǔn)確求出基本事件的個數(shù)及指定的事件的個數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將一顆質(zhì)地均勻的正方體骰子(六個面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b.設(shè)復(fù)數(shù)z=a+bi.
(1)求事件“z-3i為實(shí)數(shù)”的概率;
(2)求事件“復(fù)數(shù)z在復(fù)平面內(nèi)的對應(yīng)點(diǎn)(a,b)滿足(a-2)2+b2≤9”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一顆質(zhì)地均勻的正方體骰子(六個面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b.設(shè)復(fù)數(shù)z=a+bi.
(Ⅰ)求事件“z-4i為實(shí)數(shù)”的概率;
(Ⅱ)求事件“|z-1|≤3”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一顆質(zhì)地均勻的正方體骰子(六個面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為x,第二次出現(xiàn)的點(diǎn)數(shù)為y.則事件“x+y≤3”的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)將一顆質(zhì)地均勻的正方體骰子(六個面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b.求上述方程有實(shí)根的概率;
(2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

同步練習(xí)冊答案