設(shè)函數(shù)f(x)在定義域R上總有f(x)=-f(x+2),且當(dāng)-1<x≤1時(shí),f(x)=x2+2.
(1)當(dāng)3<x≤5時(shí),求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(3,5]上的單調(diào)性,并予以證明.
分析:(1)易證y=f(x)是以4為周期的函數(shù),從而可由-1<x≤1時(shí),f(x)=x2+2⇒當(dāng)3<x≤5時(shí),函數(shù)f(x)的解析式;
(2)任取x1,x2∈(3,4],且x1<x2,利用單調(diào)性的定義,作差f(x1)-f(x2)判斷其符號即可.
解答:解:(1)∵f(x)=-f(x+2),
∴f(x+2)=-f(x),
∴f(x+4)=f[(x+2)+2]=-f(x+2)=-[-f(x)]=f(x),
∴y=f(x)是以4為周期的函數(shù),
又當(dāng)-1<x≤1時(shí),f(x)=x2+2,
∴當(dāng)3<x≤5時(shí),-1<x-4≤1,
∴f(x)=f(x-4)=(x-4)2+2;
(2)∵函數(shù)f(x)=(x-4)2+2的對稱軸是x=4,
∴函數(shù)f(x)=(x-4)2+2在(3,4]上單調(diào)遞減,在[4,5]上單調(diào)遞增;
證明:任取x1,x2∈(3,4],且x1<x2,有
f(x1)-f(x2
=[(x1-4)2+2]-[(x2-4)2+2]
=(x1-x2)(x1+x2-8).
∵3<x1<x2≤4,
∴x1-x2<0,x1+x2-8<0.
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
故函數(shù)y=f(x)在(3,4]上單調(diào)遞減.
同理可證函數(shù)在[4,5]上單調(diào)遞增.
點(diǎn)評:本題考查抽象函數(shù)及其應(yīng)用,著重考查函數(shù)的周期性與單調(diào)性,考查推理論證能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在[-1,0)∪(0,1]上的奇函數(shù),當(dāng)x∈[-1,0)時(shí),f(x)=
a
x
-x2
(a為實(shí)數(shù)).
(1)若f(
1
2
)=-2
,求a的值;
(2)當(dāng)x∈(0,1]時(shí),求f(x)的解析式;
(3)當(dāng)a>2時(shí),試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)=f(x)在(-∞,+∞)內(nèi)有定義,對于給定的正數(shù)K,定義函數(shù)fK(x)=
f(x),f(x)≤K
K,f(x)>K.
取函數(shù)f(x)=2-|x|.當(dāng)K=
1
2
時(shí),函數(shù)fK(x)的單調(diào)遞增區(qū)間為( 。
A、(-∞,0)
B、(0,+∞)
C、(-∞,-1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在(-∞,+∞)內(nèi)有定義,對于給定的正數(shù)K,定義函數(shù):fK(x)=
f(x),f(x)≤K
1
f(x)
,f(x)>K
,取函數(shù)f(x)=a11(a>1).當(dāng)K=
1
a
時(shí),函數(shù)f(x)值域是( 。
A、[0,
1
a
]∪[1,a)
B、(0,
1
a
]∪[1,a]
C、(0,1]∪[
1
a
,a)
D、(0,
1
a
]∪[1,a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江)設(shè)函數(shù)f(x)是定義在R上的周期為2的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x+1,則f(
3
2
)
=
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(-∞,+∞)上的增函數(shù),是否存在這樣的實(shí)數(shù)a,使得不等式f(1-ax-x2)<f(2-a)對于任意x∈[0,1]都成立?若存在,試求出實(shí)數(shù)a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案