新晨投資公司擬投資開發(fā)某項新產(chǎn)品,市場評估能獲得萬元的投資收益.現(xiàn)公司準備制定一個對科研課題組的獎勵方案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎金不低于萬元,同時不超過投資收益的.
(1)設(shè)獎勵方案的函數(shù)模型為,試用數(shù)學(xué)語言表述公司對獎勵方案的函數(shù)模型的基本要求.
(2)下面是公司預(yù)設(shè)的兩個獎勵方案的函數(shù)模型:
①; ②
試分別分析這兩個函數(shù)模型是否符合公司要求.
(1)詳見解析;(2)詳見解析.
【解析】
試題分析:(1)根據(jù)題中的條件對函數(shù)的基本要求轉(zhuǎn)化為數(shù)學(xué)語言;(2)對題中的兩個函數(shù)是否滿足(1)中的三個限制條件進行驗證,對于函數(shù)上述兩個函數(shù)是否滿足題中的條件,主要是研究函數(shù)的單調(diào)性與最值以及恒成立問題,可以利用基本函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)來進行求解.
試題解析:(1)由題意知,公司對獎勵方案的函數(shù)模型的基本要求是:
當時,
①是增函數(shù);②恒成立;③恒成立;
(2)①對于函數(shù)模型:當時,是增函數(shù),
則顯然恒成立;
而若使函數(shù)在上恒成立,整理即恒成立,而,
∴不恒成立.故該函數(shù)模型不符合公司要求.
②對于函數(shù)模型:
當時,是增函數(shù),則.∴恒成立.
設(shè),則.
當時,,
所以在上是減函數(shù),
從而.
∴,即,∴恒成立.
故該函數(shù)模型符合公司要求.
考點:1.函數(shù)的單調(diào)性;2.函數(shù)不等式
科目:高中數(shù)學(xué) 來源: 題型:
x | 150 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x |
150 |
10x-3a |
x+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x | 150 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省文登市高三上學(xué)期期中統(tǒng)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
新晨投資公司擬投資開發(fā)某項新產(chǎn)品,市場評估能獲得萬元的投資收益.現(xiàn)公司準備制定一個對科研課題組的獎勵方案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎金不低于萬元,同時不超過投資收益的.
(1)設(shè)獎勵方案的函數(shù)模型為,試用數(shù)學(xué)語言表述公司對獎勵方案的函數(shù)模型的基本要求.
(2)下面是公司預(yù)設(shè)的兩個獎勵方案的函數(shù)模型:
①; ②
試分別分析這兩個函數(shù)模型是否符合公司要求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com