精英家教網(wǎng)已知函數(shù)f(x)的定義域?yàn)閇-2,+∞),部分對(duì)應(yīng)值如下表.f′(x)為f(x)的導(dǎo)函數(shù),函數(shù)y=f′(x)的圖象如下圖所示.若兩正數(shù)a,b滿(mǎn)足f(2a+b)<1,則
2b+6
a+3
的取值范圍是( 。
X -2 0 4
f(x) 1 -1 1
A、(
6
5
,
14
3
)
B、(
12
7
8
3
)
C、(
4
3
,
12
5
)
D、(-
2
3
,6)
分析:由導(dǎo)函數(shù)的圖象得到導(dǎo)函數(shù)的符號(hào),利用導(dǎo)函數(shù)的符號(hào)與函數(shù)單調(diào)性的關(guān)系得到f(x)的單調(diào)性,結(jié)合函數(shù)的單調(diào)性求出不等式的解即a,b的關(guān)系,畫(huà)出關(guān)于a,b的不等式表示的平面區(qū)域,給函數(shù)與幾何意義,結(jié)合圖象求出其取值范圍.
解答:精英家教網(wǎng)解:由導(dǎo)函數(shù)的圖形知,
x∈(-2,0)時(shí),f′(x)<0;
x∈(0,+∞)時(shí),f′(x)>0
∴f(x)在(-2,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;
∵f(2a+b)<1
∴-2<2a+b<4
∵a>0,b>0
∴a,b滿(mǎn)足的可行域?yàn)?BR>
2b+6
a+3
=2
b+3
a+3
表示點(diǎn)(a,b)與(-3,-3)連線(xiàn)的斜率的2倍
由圖知當(dāng)點(diǎn)為(2.,0)時(shí)斜率最小,當(dāng)點(diǎn)為(0,4)時(shí)斜率最大
所以
2b+6
a+3
的取值范圍為(
6
5
,
14
3
)

故選A
點(diǎn)評(píng):利用導(dǎo)函數(shù)求函數(shù)的單調(diào)性問(wèn)題,應(yīng)該先判斷出導(dǎo)函數(shù)的符號(hào),當(dāng)導(dǎo)函數(shù)大于0對(duì)應(yīng)函數(shù)單調(diào)遞增;當(dāng)導(dǎo)函數(shù)小于0,對(duì)應(yīng)函數(shù)單調(diào)遞減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿(mǎn)足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的有( 。﹤(gè).
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對(duì)任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點(diǎn)P處的切線(xiàn)存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線(xiàn)存在.
③因?yàn)?>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對(duì)求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個(gè)根,則實(shí)數(shù)p,q的值分別是12,26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線(xiàn)y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線(xiàn)C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線(xiàn)C與其在點(diǎn)P1(x1,f(x1))處的切線(xiàn)交于另一點(diǎn)P2(x2,f(x2)),曲線(xiàn)C與其在點(diǎn)P2(x2,f(x2))處的切線(xiàn)交于另一點(diǎn)P3(x3,f(x3)),線(xiàn)段P1P2,P2P3與曲線(xiàn)C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對(duì)于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請(qǐng)給出類(lèi)似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-ax+b存在極值點(diǎn).
(1)求a的取值范圍;
(2)過(guò)曲線(xiàn)y=f(x)外的點(diǎn)P(1,0)作曲線(xiàn)y=f(x)的切線(xiàn),所作切線(xiàn)恰有兩條,切點(diǎn)分別為A、B.
(。┳C明:a=b;
(ⅱ)請(qǐng)問(wèn)△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案