【題目】某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | ﹣5 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫(xiě)在相應(yīng)位置,并直接寫(xiě)出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點(diǎn)向左平行移動(dòng)θ(θ>0)個(gè)單位長(zhǎng)度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個(gè)對(duì)稱(chēng)中心為( ,0),求θ的最小值.
【答案】
(1)解:根據(jù)表中已知數(shù)據(jù),解得A=5,ω=2,φ=﹣ .?dāng)?shù)據(jù)補(bǔ)全如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | 0 | ﹣5 | 0 |
且函數(shù)表達(dá)式為f(x)=5sin(2x﹣ )
(2)解:由(Ⅰ)知f(x)=5sin(2x﹣ ),得g(x)=5sin(2x+2θ﹣ ).
因?yàn)閥=sinx的對(duì)稱(chēng)中心為(kπ,0),k∈Z.
令2x+2θ﹣ =kπ,解得x= ,k∈Z.
由于函數(shù)y=g(x)的圖象關(guān)于點(diǎn)( ,0)成中心對(duì)稱(chēng),令 = ,
解得θ= ,k∈Z.由θ>0可知,當(dāng)K=1時(shí),θ取得最小值
【解析】(1)根據(jù)表中已知數(shù)據(jù),解得A=5,ω=2,φ=﹣ .從而可補(bǔ)全數(shù)據(jù),解得函數(shù)表達(dá)式為f(x)=5sin(2x﹣ ).(2)由(Ⅰ)及函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律得g(x)=5sin(2x+2θ﹣ ).令2x+2θ﹣ =kπ,解得x= ,k∈Z.令 = ,解得θ= ,k∈Z.由θ>0可得解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)組織工人技能培訓(xùn),其中甲、乙兩名技工在培訓(xùn)時(shí)進(jìn)行的5次技能測(cè)試中的成績(jī)?nèi)鐖D莖葉圖所示. (Ⅰ)現(xiàn)要從中選派一人參加技能大賽,從這兩名技工的測(cè)試成績(jī)分析,派誰(shuí)參加更合適;
(Ⅱ)若將頻率視為概率,對(duì)選派參加技能大賽的技工在今后三次技能大賽的成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)中高于85分的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}滿(mǎn)足 ,n∈N* . (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 若不等式Sn>kan﹣2對(duì)一切n∈N*恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(理科答)已知數(shù)列{an}及等差數(shù)列{bn},若a1=3,an= an﹣1+1(n≥2),a1=b2 , 2a3+a2=b4 ,
(1)證明數(shù)列{an﹣2}為等比數(shù)列;
(2)求數(shù)列{an}及數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)數(shù)列{anbn}的前n項(xiàng)和為T(mén)n , 求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,E是PC的中點(diǎn),求證: (Ⅰ)PA∥平面EDB
(Ⅱ)AD⊥PC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別是棱B1C1 , C1D1的中點(diǎn). (Ⅰ)求AD1與EF所成角的大;
(Ⅱ)求AF與平面BEB1所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)高三年級(jí)從甲、乙兩個(gè)班級(jí)各選出7名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿(mǎn)分100分)的莖葉圖如圖,其中甲班學(xué)生的平均分是85,乙班學(xué)生成績(jī)的中位數(shù)是83.
(1)求x和y的值;
(2)計(jì)算甲班7位學(xué)生成績(jī)的方差s2;
(3)從成績(jī)?cè)?0分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求甲班至少有一名學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)F1 , F2分別是橢圓E: =1(a>b>0)的左、右焦點(diǎn),過(guò)F1傾斜角為45°的直線(xiàn)l與E相交于A,B兩點(diǎn),且|AB|= (Ⅰ)求E的離心率
(Ⅱ)設(shè)點(diǎn)P(0,﹣1)滿(mǎn)足|PA|=|PB|,求E的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com