【題目】已知橢圓C: 的右焦點(diǎn)為F(1,0),且點(diǎn)(﹣1, )在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l過點(diǎn)F,且與橢圓C交于A,B兩點(diǎn),試問x軸上是否存在定點(diǎn)Q,使得 恒成立?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.
【答案】
(1)解:由題意,c=1
∵點(diǎn)(﹣1, )在橢圓C上,∴根據(jù)橢圓的定義可得:2a= ,∴a=
∴b2=a2﹣c2=1,
∴橢圓C的標(biāo)準(zhǔn)方程為
(2)解:假設(shè)x軸上存在點(diǎn)Q(m,0),使得 恒成立
當(dāng)直線l的斜率為0時(shí),A( ,0),B(﹣ ,0),則 =﹣ ,∴ ,∴m= ①
當(dāng)直線l的斜率不存在時(shí), , ,則 =﹣ ,
∴
∴m= 或m= ②
由①②可得m= .
下面證明m= 時(shí), 恒成立
當(dāng)直線l的斜率為0時(shí),結(jié)論成立;
當(dāng)直線l的斜率不為0時(shí),設(shè)直線l的方程為x=ty+1,A(x1,y1),B(x2,y2)
直線方程代入橢圓方程,整理可得(t2+2)y2+2ty﹣1=0,∴y1+y2=﹣ ,y1y2=﹣
∴ =(x1﹣ ,y1)(x2﹣ ,y2)=(ty1﹣ )(ty2﹣ )+y1y2=(t2+1)y1y2﹣ t(y1+y2)+ = + =﹣
綜上,x軸上存在點(diǎn)Q( ,0),使得 恒成立
【解析】(1)利用橢圓的定義求出a的值,進(jìn)而可求b的值,即可得到橢圓的標(biāo)準(zhǔn)方程;(2)先利用特殊位置,猜想點(diǎn)Q的坐標(biāo),再證明一般性也成立即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】光線從點(diǎn)A(-3,4)射出,到x軸上的點(diǎn)B后,被x軸反射到y(tǒng)軸上的點(diǎn)C,又被y軸反射,這時(shí)反射光線恰好過點(diǎn)D(-1,6),求光線BC所在直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a,b是函數(shù)f(x)=x2﹣px+q(p>0,q>0)的兩個(gè)不同的零點(diǎn),且a,b,﹣2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則p+q的值等于( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從橢圓上一點(diǎn)向軸作垂線,垂足恰好為橢圓的左焦點(diǎn), 是橢圓的右頂點(diǎn), 是橢圓的上頂點(diǎn),且.
(1)求該橢圓的方程;
(2)不過原點(diǎn)的直線與橢圓交于兩點(diǎn),已知,直線, 的斜率, 成等比數(shù)列,記以, 為直徑的圓的面積分別為,求證; 為定值,并求出定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左、右焦點(diǎn)分別為,離心率, 為橢圓上的任意一點(diǎn)(不含長(zhǎng)軸端點(diǎn)),且面積的最大值為1.
(1)求橢圓的方程;
(2)已知直線與橢圓交于不同的兩點(diǎn),且線段的中點(diǎn)不在圓內(nèi),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=n2+2n,(n∈N*),求:
(1)數(shù)列{an}的通項(xiàng)公式an;
(2)若bn=an3n , 求數(shù)列{bn}的前n項(xiàng)和 Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,把函數(shù) 的圖象向右平移 個(gè)單位,得到函數(shù) 的圖象,若 是 在 內(nèi)的兩根,則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若同時(shí)滿足以下條件:
①在D上單調(diào)遞減或單調(diào)遞增;
②存在區(qū)間,使在 上的值域是,那么稱為閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間 ;
(2)判斷函數(shù)是不是閉函數(shù)?若是請(qǐng)找出區(qū)間;若不是請(qǐng)說明理由;
(3)若是閉函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com