精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an}的前n項和為Sn , 且Sn=n2+2n,(n∈N*),求:
(1)數列{an}的通項公式an;
(2)若bn=an3n , 求數列{bn}的前n項和 Tn

【答案】
(1)解:∵ ,

∴當n=1時,a1=S1=3.

(*),

顯然,當n=1時也滿足(*)式,

綜上所述,


(2)解:由(1)可得,

其前n項和

①﹣②得,

=

=﹣2n3n+1,


【解析】(1)由 ,當n=1時,a1=S1=3.當n≥2時,an=Sn﹣Sn1 , 即可得出.(2)由(1)可得, .再利用“錯位相減法”與等比數列的前n項和公式即可得出.
【考點精析】解答此題的關鍵在于理解數列的前n項和的相關知識,掌握數列{an}的前n項和sn與通項an的關系

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)=|ex﹣e2a|,若f(x)在區(qū)間(﹣1,3﹣a)內的圖象上存在兩點,在這兩點處的切線相互垂直,則實數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知A={x|x2axa2-19=0},B={ x|x2-5x+6=0},C={x|x2+2x-8=0},且ABAC,求的值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: 的右焦點為F(1,0),且點(﹣1, )在橢圓C上.
(1)求橢圓C的標準方程;
(2)已知動直線l過點F,且與橢圓C交于A,B兩點,試問x軸上是否存在定點Q,使得 恒成立?若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直三棱柱,底面是邊長為2的正三角形, 是棱的中點,.

1若點為棱的中點,求異面直線所成角的余弦值;

2若點在棱平面,求線段的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合.

1)若的概率;

(2)若,的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點與拋物線的焦點重合,且該橢圓的離心率與雙曲線的離心率互為倒數.

1)求橢圓的方程;

(2)設直線與橢圓相交于不同的兩點,已知點的坐標為,在線段的垂直平分線上,且,的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知.

(1)若,求方程的解;

(2)若關于x的方程在(0,2)上有兩個解,求k的取值范圍,并證明

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a,b,c分別為銳角△ABC三個內角A,B,C的對邊,且(a+b)(sinA﹣sinB)=(c﹣b)sinC (Ⅰ)求∠A的大小;
(Ⅱ)若f(x)= sin cos +cos2 ,求f(B)的取值范圍.

查看答案和解析>>

同步練習冊答案